# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn from mmselfsup.models.necks import MoCoV2Neck def test_mocov2_neck(): neck = MoCoV2Neck(16, 32, 16) assert isinstance(neck.mlp, nn.Sequential) assert neck.mlp[0].in_features == 16 assert neck.mlp[2].in_features == 32 assert neck.mlp[2].out_features == 16 # test neck with avgpool fake_in = torch.rand((32, 16, 5, 5)) fake_out = neck.forward([fake_in]) assert fake_out[0].shape == torch.Size([32, 16]) # test neck without avgpool neck = MoCoV2Neck(16, 32, 16, with_avg_pool=False) fake_in = torch.rand((32, 16)) fake_out = neck.forward([fake_in]) assert fake_out[0].shape == torch.Size([32, 16])