# Copyright (c) OpenMMLab. All rights reserved. import copy import platform import pytest import torch from mmengine.data import InstanceData from mmselfsup.data import SelfSupDataSample from mmselfsup.models.algorithms import ODC num_classes = 5 backbone = dict( type='ResNet', depth=18, in_channels=3, out_indices=[4], # 0: conv-1, x: stage-x norm_cfg=dict(type='BN')) neck = dict( type='ODCNeck', in_channels=512, hid_channels=2, out_channels=2, norm_cfg=dict(type='BN1d'), with_avg_pool=True) head = dict( type='ClsHead', loss=dict(type='mmcls.CrossEntropyLoss'), with_avg_pool=False, in_channels=2, num_classes=num_classes) memory_bank = dict( type='ODCMemory', length=8, feat_dim=2, momentum=0.5, num_classes=num_classes, min_cluster=2, debug=False) @pytest.mark.skipif( not torch.cuda.is_available() or platform.system() == 'Windows', reason='CUDA is not available or Windows mem limit') def test_odc(): data_preprocessor = { 'mean': (123.675, 116.28, 103.53), 'std': (58.395, 57.12, 57.375), 'bgr_to_rgb': True } alg = ODC( backbone=backbone, neck=neck, head=head, memory_bank=memory_bank, data_preprocessor=copy.deepcopy(data_preprocessor)) fake_data_sample = SelfSupDataSample() fake_sample_idx = InstanceData(value=torch.tensor([0])) fake_data_sample.sample_idx = fake_sample_idx fake_data = [{ 'inputs': [torch.randn((3, 224, 224))], 'data_sample': fake_data_sample } for _ in range(2)] fake_inputs, fake_data_samples = alg.data_preprocessor(fake_data) # test extract fake_feats = alg(fake_inputs, fake_data_samples, mode='tensor') assert fake_feats[0].size() == torch.Size([2, 512, 7, 7])