_base_ = '../../base.py' # model settings model = dict( type='Classification', pretrained=None, backbone=dict( type='ResNet', depth=50, out_indices=[4], # 0: conv-1, x: stage-x norm_cfg=dict(type='SyncBN')), head=dict( type='ClsHead', with_avg_pool=True, in_channels=2048, num_classes=1000)) # dataset settings data_source_cfg = dict( type='ImageNet', memcached=False, mclient_path='/mnt/lustre/share/memcached_client') data_train_list = 'data/imagenet/meta/train_labeled.txt' data_train_root = 'data/imagenet/train' data_test_list = 'data/imagenet/meta/val_labeled.txt' data_test_root = 'data/imagenet/val' dataset_type = 'ClassificationDataset' img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_pipeline = [ dict(type='RandomResizedCrop', size=224), dict(type='RandomHorizontalFlip'), dict(type='ToTensor'), dict(type='Normalize', **img_norm_cfg), ] test_pipeline = [ dict(type='Resize', size=256), dict(type='CenterCrop', size=224), dict(type='ToTensor'), dict(type='Normalize', **img_norm_cfg), ] data = dict( imgs_per_gpu=32, # total 256 workers_per_gpu=2, train=dict( type=dataset_type, data_source=dict( list_file=data_train_list, root=data_train_root, **data_source_cfg), pipeline=train_pipeline), val=dict( type=dataset_type, data_source=dict( list_file=data_test_list, root=data_test_root, **data_source_cfg), pipeline=test_pipeline)) # additional hooks custom_hooks = [ dict( type='ValidateHook', dataset=data['val'], initial=True, interval=10, imgs_per_gpu=32, workers_per_gpu=2, eval_param=dict(topk=(1, 5))) ] # optimizer optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001) # learning policy lr_config = dict(policy='step', step=[30, 60, 90]) checkpoint_config = dict(interval=10) # runtime settings total_epochs = 90