from __future__ import division import math import numpy as np import torch from mmcv.runner import get_dist_info from torch.utils.data import DistributedSampler as _DistributedSampler from torch.utils.data import Sampler class DistributedSampler(_DistributedSampler): def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, replace=False): super().__init__(dataset, num_replicas=num_replicas, rank=rank) self.shuffle = shuffle self.replace = replace self.unif_sampling_flag = False def __iter__(self): # deterministically shuffle based on epoch if not self.unif_sampling_flag: self.generate_new_list() else: self.unif_sampling_flag = False return iter(self.indices[self.rank * self.num_samples:(self.rank + 1) * self.num_samples]) def generate_new_list(self): if self.shuffle: g = torch.Generator() g.manual_seed(self.epoch) if self.replace: indices = torch.randint( low=0, high=len(self.dataset), size=(len(self.dataset), ), generator=g).tolist() else: indices = torch.randperm( len(self.dataset), generator=g).tolist() else: indices = torch.arange(len(self.dataset)).tolist() # add extra samples to make it evenly divisible indices += indices[:(self.total_size - len(indices))] assert len(indices) == self.total_size self.indices = indices def set_uniform_indices(self, labels, num_classes): self.unif_sampling_flag = True assert self.shuffle, "Using uniform sampling, the indices must be shuffled." np.random.seed(self.epoch) assert (len(labels) == len(self.dataset)) N = len(labels) size_per_label = int(N / num_classes) + 1 indices = [] images_lists = [[] for i in range(num_classes)] for i, l in enumerate(labels): images_lists[l].append(i) for i, l in enumerate(images_lists): if len(l) == 0: continue indices.extend( np.random.choice( l, size_per_label, replace=(len(l) <= size_per_label))) indices = np.array(indices) np.random.shuffle(indices) indices = indices[:N].astype(np.int).tolist() # add extra samples to make it evenly divisible assert len(indices) <= self.total_size, \ "{} vs {}".format(len(indices), self.total_size) indices += indices[:(self.total_size - len(indices))] assert len(indices) == self.total_size, \ "{} vs {}".format(len(indices), self.total_size) self.indices = indices class GroupSampler(Sampler): def __init__(self, dataset, samples_per_gpu=1): assert hasattr(dataset, 'flag') self.dataset = dataset self.samples_per_gpu = samples_per_gpu self.flag = dataset.flag.astype(np.int64) self.group_sizes = np.bincount(self.flag) self.num_samples = 0 for i, size in enumerate(self.group_sizes): self.num_samples += int(np.ceil( size / self.samples_per_gpu)) * self.samples_per_gpu def __iter__(self): indices = [] for i, size in enumerate(self.group_sizes): if size == 0: continue indice = np.where(self.flag == i)[0] assert len(indice) == size np.random.shuffle(indice) num_extra = int(np.ceil(size / self.samples_per_gpu) ) * self.samples_per_gpu - len(indice) indice = np.concatenate( [indice, np.random.choice(indice, num_extra)]) indices.append(indice) indices = np.concatenate(indices) indices = [ indices[i * self.samples_per_gpu:(i + 1) * self.samples_per_gpu] for i in np.random.permutation( range(len(indices) // self.samples_per_gpu)) ] indices = np.concatenate(indices) indices = indices.astype(np.int64).tolist() assert len(indices) == self.num_samples return iter(indices) def __len__(self): return self.num_samples class DistributedGroupSampler(Sampler): """Sampler that restricts data loading to a subset of the dataset. It is especially useful in conjunction with :class:`torch.nn.parallel.DistributedDataParallel`. In such case, each process can pass a DistributedSampler instance as a DataLoader sampler, and load a subset of the original dataset that is exclusive to it. .. note:: Dataset is assumed to be of constant size. Arguments: dataset: Dataset used for sampling. num_replicas (optional): Number of processes participating in distributed training. rank (optional): Rank of the current process within num_replicas. """ def __init__(self, dataset, samples_per_gpu=1, num_replicas=None, rank=None): _rank, _num_replicas = get_dist_info() if num_replicas is None: num_replicas = _num_replicas if rank is None: rank = _rank self.dataset = dataset self.samples_per_gpu = samples_per_gpu self.num_replicas = num_replicas self.rank = rank self.epoch = 0 assert hasattr(self.dataset, 'flag') self.flag = self.dataset.flag self.group_sizes = np.bincount(self.flag) self.num_samples = 0 for i, j in enumerate(self.group_sizes): self.num_samples += int( math.ceil(self.group_sizes[i] * 1.0 / self.samples_per_gpu / self.num_replicas)) * self.samples_per_gpu self.total_size = self.num_samples * self.num_replicas def __iter__(self): # deterministically shuffle based on epoch g = torch.Generator() g.manual_seed(self.epoch) indices = [] for i, size in enumerate(self.group_sizes): if size > 0: indice = np.where(self.flag == i)[0] assert len(indice) == size indice = indice[list(torch.randperm(int(size), generator=g))].tolist() extra = int( math.ceil( size * 1.0 / self.samples_per_gpu / self.num_replicas) ) * self.samples_per_gpu * self.num_replicas - len(indice) # pad indice tmp = indice.copy() for _ in range(extra // size): indice.extend(tmp) indice.extend(tmp[:extra % size]) indices.extend(indice) assert len(indices) == self.total_size indices = [ indices[j] for i in list( torch.randperm( len(indices) // self.samples_per_gpu, generator=g)) for j in range(i * self.samples_per_gpu, (i + 1) * self.samples_per_gpu) ] # subsample offset = self.num_samples * self.rank indices = indices[offset:offset + self.num_samples] assert len(indices) == self.num_samples return iter(indices) def __len__(self): return self.num_samples def set_epoch(self, epoch): self.epoch = epoch class DistributedGivenIterationSampler(Sampler): def __init__(self, dataset, total_iter, batch_size, num_replicas=None, rank=None, last_iter=-1): rank, world_size = get_dist_info() assert rank < world_size self.dataset = dataset self.total_iter = total_iter self.batch_size = batch_size self.world_size = world_size self.rank = rank self.last_iter = last_iter self.total_size = self.total_iter * self.batch_size self.indices = self.gen_new_list() def __iter__(self): return iter(self.indices[(self.last_iter + 1) * self.batch_size:]) def set_uniform_indices(self, labels, num_classes): np.random.seed(0) assert (len(labels) == len(self.dataset)) N = len(labels) size_per_label = int(N / num_classes) + 1 indices = [] images_lists = [[] for i in range(num_classes)] for i, l in enumerate(labels): images_lists[l].append(i) for i, l in enumerate(images_lists): if len(l) == 0: continue indices.extend( np.random.choice( l, size_per_label, replace=(len(l) <= size_per_label))) indices = np.array(indices) np.random.shuffle(indices) indices = indices[:N].astype(np.int) # repeat all_size = self.total_size * self.world_size indices = indices[:all_size] num_repeat = (all_size - 1) // indices.shape[0] + 1 indices = np.tile(indices, num_repeat) indices = indices[:all_size] np.random.shuffle(indices) # slice beg = self.total_size * self.rank indices = indices[beg:beg + self.total_size] assert len(indices) == self.total_size # set self.indices = indices def gen_new_list(self): # each process shuffle all list with same seed, and pick one piece according to rank np.random.seed(0) all_size = self.total_size * self.world_size indices = np.arange(len(self.dataset)) indices = indices[:all_size] num_repeat = (all_size - 1) // indices.shape[0] + 1 indices = np.tile(indices, num_repeat) indices = indices[:all_size] np.random.shuffle(indices) beg = self.total_size * self.rank indices = indices[beg:beg + self.total_size] assert len(indices) == self.total_size return indices def __len__(self): # note here we do not take last iter into consideration, since __len__ # should only be used for displaying, the correct remaining size is # handled by dataloader #return self.total_size - (self.last_iter+1)*self.batch_size return self.total_size def set_epoch(self, epoch): pass