""" Layer-wise adaptive rate scaling for SGD in PyTorch! """ import torch from torch.optim.optimizer import Optimizer, required from torch.optim import * class LARS(Optimizer): r"""Implements layer-wise adaptive rate scaling for SGD. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float): base learning rate (\gamma_0) momentum (float, optional): momentum factor (default: 0) ("m") weight_decay (float, optional): weight decay (L2 penalty) (default: 0) ("\beta") eta (float, optional): LARS coefficient max_epoch: maximum training epoch to determine polynomial LR decay. Based on Algorithm 1 of the following paper by You, Gitman, and Ginsburg. Large Batch Training of Convolutional Networks: https://arxiv.org/abs/1708.03888 Example: >>> optimizer = LARS(model.parameters(), lr=0.1, eta=1e-3) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() """ def __init__(self, params, lr=required, momentum=.9, weight_decay=.0005, eta=0.001): if lr is not required and lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if momentum < 0.0: raise ValueError("Invalid momentum value: {}".format(momentum)) if weight_decay < 0.0: raise ValueError( "Invalid weight_decay value: {}".format(weight_decay)) if eta < 0.0: raise ValueError("Invalid LARS coefficient value: {}".format(eta)) defaults = dict( lr=lr, momentum=momentum, weight_decay=weight_decay, eta=eta) super(LARS, self).__init__(params, defaults) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. epoch: current epoch to calculate polynomial LR decay schedule. if None, uses self.epoch and increments it. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: weight_decay = group['weight_decay'] momentum = group['momentum'] eta = group['eta'] lr = group['lr'] for p in group['params']: if p.grad is None: continue param_state = self.state[p] d_p = p.grad.data weight_norm = torch.norm(p.data) grad_norm = torch.norm(d_p) # Compute local learning rate for this layer local_lr = eta * weight_norm / \ (grad_norm + weight_decay * weight_norm) # Update the momentum term actual_lr = local_lr * lr if 'momentum_buffer' not in param_state: buf = param_state['momentum_buffer'] = \ torch.zeros_like(p.data) else: buf = param_state['momentum_buffer'] buf.mul_(momentum).add_(actual_lr, d_p + weight_decay * p.data) p.data.add_(-buf) return loss