import torch import torch.nn as nn from openselfsup.utils import print_log from . import builder from .registry import MODELS @MODELS.register_module class RotationPred(nn.Module): def __init__(self, backbone, head=None, pretrained=None): super(RotationPred, self).__init__() self.backbone = builder.build_backbone(backbone) if head is not None: self.head = builder.build_head(head) self.init_weights(pretrained=pretrained) def init_weights(self, pretrained=None): if pretrained is not None: print_log('load model from: {}'.format(pretrained), logger='root') self.backbone.init_weights(pretrained=pretrained) self.head.init_weights(init_linear='kaiming') def forward_backbone(self, img): """Forward backbone Returns: x (tuple): backbone outputs """ x = self.backbone(img) return x def forward_train(self, img, rot_label, **kwargs): x = self.forward_backbone(img) outs = self.head(x) loss_inputs = (outs, rot_label) losses = self.head.loss(*loss_inputs) return losses def forward_test(self, img, **kwargs): x = self.forward_backbone(img) # tuple outs = self.head(x) keys = ['head{}'.format(i) for i in range(len(outs))] out_tensors = [out.cpu() for out in outs] # NxC return dict(zip(keys, out_tensors)) def forward(self, img, rot_label=None, mode='train', **kwargs): if mode != "extract" and img.dim() == 5: assert rot_label.dim() == 2 img = img.view( img.size(0) * img.size(1), img.size(2), img.size(3), img.size(4)) rot_label = torch.flatten(rot_label) if mode == 'train': return self.forward_train(img, rot_label, **kwargs) elif mode == 'test': return self.forward_test(img, **kwargs) elif mode == 'extract': return self.forward_backbone(img) else: raise Exception("No such mode: {}".format(mode))