_base_ = [ '../_base_/models/cae.py', '../_base_/datasets/imagenet_cae.py', '../_base_/schedules/adamw_coslr-200e_in1k.py', '../_base_/default_runtime.py', ] # dataset data = dict(samples_per_gpu=64, workers_per_gpu=8) # optimizer optimizer = dict( lr=1.5e-3, paramwise_options={ 'norm': dict(weight_decay=0.), 'bias': dict(weight_decay=0.), 'gamma': dict(weight_decay=0.) }, betas=(0.9, 0.999)) # learning policy lr_config = dict( policy='StepFixCosineAnnealing', min_lr=1e-5, warmup='linear', warmup_iters=10, warmup_ratio=1e-4, warmup_by_epoch=True, by_epoch=False) # schedule runner = dict(max_epochs=300) # clip gradient optimizer_config = dict(grad_clip=dict(max_norm=3.0)) # mixed precision fp16 = dict(loss_scale='dynamic') # runtime checkpoint_config = dict(interval=1, max_keep_ckpts=2, out_dir='') persistent_workers = True log_config = dict( interval=100, hooks=[ dict(type='TextLoggerHook'), ]) find_unused_parameters = True