# dataset settings data_source = 'CIFAR10' dataset_type = 'SingleViewDataset' img_norm_cfg = dict(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.201]) train_pipeline = [ dict(type='RandomCrop', size=32, padding=4), dict(type='RandomHorizontalFlip'), ] test_pipeline = [] # prefetch prefetch = False if not prefetch: train_pipeline.extend( [dict(type='ToTensor'), dict(type='Normalize', **img_norm_cfg)]) test_pipeline.extend( [dict(type='ToTensor'), dict(type='Normalize', **img_norm_cfg)]) # dataset summary data = dict( samples_per_gpu=128, workers_per_gpu=2, train=dict( type=dataset_type, data_source=dict( type=data_source, data_prefix='data/cifar10', ), pipeline=train_pipeline, prefetch=prefetch), val=dict( type=dataset_type, data_source=dict( type=data_source, data_prefix='data/cifar10', ), pipeline=test_pipeline, prefetch=prefetch), test=dict( type=dataset_type, data_source=dict( type=data_source, data_prefix='data/cifar10', ), pipeline=test_pipeline, prefetch=prefetch)) evaluation = dict(interval=10, topk=(1, 5))