import torch.nn as nn def accuracy(pred, target, topk=1): assert isinstance(topk, (int, tuple)) if isinstance(topk, int): topk = (topk, ) return_single = True else: return_single = False maxk = max(topk) _, pred_label = pred.topk(maxk, dim=1) pred_label = pred_label.t() correct = pred_label.eq(target.view(1, -1).expand_as(pred_label)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / pred.size(0))) return res[0] if return_single else res class Accuracy(nn.Module): def __init__(self, topk=(1, )): super().__init__() self.topk = topk def forward(self, pred, target): return accuracy(pred, target, self.topk)