# Copyright (c) OpenMMLab. All rights reserved. import copy import platform import pytest import torch from mmselfsup.models.algorithms.mae import MAE from mmselfsup.structures import SelfSupDataSample from mmselfsup.utils import register_all_modules register_all_modules() backbone = dict(type='MAEViT', arch='b', patch_size=16, mask_ratio=0.75) neck = dict( type='MAEPretrainDecoder', patch_size=16, in_chans=3, embed_dim=768, decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16, mlp_ratio=4., ) loss = dict(type='MAEReconstructionLoss') head = dict(type='MAEPretrainHead', norm_pix=False, patch_size=16, loss=loss) @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit') def test_mae(): data_preprocessor = { 'mean': [0.5, 0.5, 0.5], 'std': [0.5, 0.5, 0.5], 'bgr_to_rgb': True } alg = MAE( backbone=backbone, neck=neck, head=head, data_preprocessor=copy.deepcopy(data_preprocessor)) fake_data = { 'inputs': [torch.randn((2, 3, 224, 224))], 'data_sample': [SelfSupDataSample() for _ in range(2)] } fake_batch_inputs, fake_data_samples = alg.data_preprocessor(fake_data) fake_outputs = alg(fake_batch_inputs, fake_data_samples, mode='loss') assert isinstance(fake_outputs['loss'].item(), float) fake_feats = alg(fake_batch_inputs, fake_data_samples, mode='tensor') assert list(fake_feats.shape) == [2, 196, 768] results = alg(fake_batch_inputs, fake_data_samples, mode='predict') assert list(results.mask.value.shape) == [2, 224, 224, 3] assert list(results.pred.value.shape) == [2, 224, 224, 3]