# Copyright (c) OpenMMLab. All rights reserved. import copy import platform import pytest import torch from mmengine.structures import InstanceData from mmselfsup.models.algorithms.maskfeat import MaskFeat from mmselfsup.structures import SelfSupDataSample from mmselfsup.utils import register_all_modules register_all_modules() backbone = dict(type='MaskFeatViT', arch='b', patch_size=16) neck = dict( type='LinearNeck', in_channels=768, out_channels=108, with_avg_pool=False) head = dict( type='MaskFeatPretrainHead', loss=dict(type='PixelReconstructionLoss', criterion='L2')) target_generator = dict( type='HOGGenerator', nbins=9, pool=8, gaussian_window=16) @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit') def test_maskfeat(): data_preprocessor = { 'mean': [0.5, 0.5, 0.5], 'std': [0.5, 0.5, 0.5], 'bgr_to_rgb': True } alg = MaskFeat( backbone=backbone, neck=neck, head=head, target_generator=target_generator, data_preprocessor=copy.deepcopy(data_preprocessor)) # test forward_train fake_data_sample = SelfSupDataSample() fake_mask = InstanceData(value=torch.rand((14, 14)).bool()) fake_data_sample.mask = fake_mask fake_data = { 'inputs': [torch.randn((2, 3, 224, 224))], 'data_sample': [fake_data_sample for _ in range(2)] } fake_batch_inputs, fake_data_samples = alg.data_preprocessor(fake_data) fake_outputs = alg(fake_batch_inputs, fake_data_samples, mode='loss') assert isinstance(fake_outputs['loss'].item(), float) fake_feats = alg.extract_feat(fake_batch_inputs, fake_data_samples) assert list(fake_feats.shape) == [2, 197, 768]