# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp import mmcv import numpy as np from mmcv import Config, DictAction from mmselfsup.datasets.builder import build_dataset from mmselfsup.registry import VISUALIZERS from mmselfsup.utils import register_all_modules def parse_args(): parser = argparse.ArgumentParser(description='Browse a dataset') parser.add_argument('config', help='train config file path') parser.add_argument( '--output-dir', default=None, type=str, help='If there is no display interface, you can save it') parser.add_argument('--not-show', default=False, action='store_true') parser.add_argument( '--show-interval', type=float, default=2, help='the interval of show (s)') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # register all modules in mmselfsup into the registries register_all_modules() dataset = build_dataset(cfg.train_dataloader.dataset) visualizer = VISUALIZERS.build(cfg.visualizer) visualizer.dataset_meta = dataset.METAINFO progress_bar = mmcv.ProgressBar(len(dataset)) for item in dataset: if 'pseudo_label' in item['data_sample']: # for rotation_pred if 'rot_label' in item['data_sample'].pseudo_label: img = np.concatenate(item['inputs'], axis=-1) img = np.transpose(img, (1, 2, 0)) # for relative_loc else: img = item['inputs'][0].permute(1, 2, 0).numpy() # for contrastive learning elif len(item['inputs']) == 2 and 'mask' not in item['data_sample']: img = np.concatenate(item['inputs'], axis=-1) img = np.transpose(img, (1, 2, 0)) # for mask image modeling else: img = item['inputs'][0].permute(1, 2, 0).numpy() data_sample = item['data_sample'] img_path = osp.basename(item['data_sample'].img_path) out_file = osp.join( args.output_dir, osp.basename(img_path)) if args.output_dir is not None else None img = img[..., [2, 1, 0]] # bgr to rgb visualizer.add_datasample( name=osp.basename(img_path), image=img, gt_sample=data_sample, show=not args.not_show, wait_time=args.show_interval, out_file=out_file) progress_bar.update() if __name__ == '__main__': main()