# Copyright (c) OpenMMLab. All rights reserved. import platform import pytest import torch from mmselfsup.models.algorithms import SimCLR backbone = dict( type='ResNet', depth=18, in_channels=3, out_indices=[4], # 0: conv-1, x: stage-x norm_cfg=dict(type='BN')) neck = dict( type='NonLinearNeck', # SimCLR non-linear neck in_channels=512, hid_channels=2, out_channels=2, num_layers=2, with_avg_pool=True) head = dict(type='ContrastiveHead', temperature=0.1) @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit') def test_simclr(): with pytest.raises(AssertionError): alg = SimCLR(backbone=backbone, neck=None, head=head) with pytest.raises(AssertionError): alg = SimCLR(backbone=backbone, neck=neck, head=None) alg = SimCLR(backbone=backbone, neck=neck, head=head) with pytest.raises(AssertionError): fake_input = torch.randn((16, 3, 224, 224)) alg.forward_train(fake_input) fake_input = torch.randn((2, 3, 224, 224)) fake_backbone_out = alg.extract_feat(fake_input) assert fake_backbone_out[0].size() == torch.Size([2, 512, 7, 7])