# Visualization Visualization can give an intuitive interpretation of the performance of the model. - [Visualization](#visualization) - [How visualization is implemented](#how-visualization-is-implemented) - [What Visualization do in MMSelfsup](#what-visualization-do-in-mmselfsup) - [Use different storage backends](#use-different-storage-backends) - [Customize Visualization](#customize-visualization) ## How visualization is implemented It is recommended to learn the basic concept of visualization in [engine.md](https://github.com/open-mmlab/mmengine/blob/main/docs/zh_cn/design/visualization.md). OpenMMLab 2.0 introduces the visualization object `Visualizer` and several visualization backends `VisBackend`. The diagram below shows the relationship between `Visualizer` and `VisBackend`, ![img](https://user-images.githubusercontent.com/17425982/163327736-f7cb3b16-ef07-46bc-982a-3cc7495e6c82.png) ## What Visualization do in MMSelfsup (1) Save training data using different storage backends The backends in MMEngine includes `LocalVisBackend`, `TensorboardVisBackend` and `WandbVisBackend` . During training, [after_train_iter()](https://github.com/open-mmlab/mmengine/blob/main/mmengine/hooks/logger_hook.py#L150) in the default hook `LoggerHook` will be called, and use `add_scalars` in different backends, as follows: ```python ... def after_train_iter(...): ... runner.visualizer.add_scalars( tag, step=runner.iter + 1, file_path=self.json_log_path) ... ``` (2) Browse dataset The function [`add_datasample()`](https://github.com/open-mmlab/mmselfsup/blob/dev-1.x/mmselfsup/visualization/selfsup_visualizer.py#L151) is impleted in [`SelfSupVisualizer`](mmselfsup.visualization.SelfSupVisualizer), and it is mainly used in [browse_dataset.py](https://github.com/open-mmlab/mmselfsup/blob/dev-1.x/tools/analysis_tools/browse_dataset.py) for browsing dataset. More tutorial is in [analysis_tools.md](analysis_tools.md) ## Use different storage backends If you want to use a different backend (Wandb, Tensorboard, or a custom backend with a remote window), just change the `vis_backends` in the config, as follows: **Local** ```python vis_backends = [dict(type='LocalVisBackend')] ``` **Tensorboard** ```python vis_backends = [dict(type='TensorboardVisBackend')] visualizer = dict( type='SelfSupVisualizer', vis_backends=vis_backends, name='visualizer') ``` **Wandb** ```python vis_backends = [dict(type='WandbVisBackend')] visualizer = dict( type='SelfSupVisualizer', vis_backends=vis_backends, name='visualizer') ``` Note that when multiple visualization backends exist for `vis_backends`, only `WandbVisBackend` is valid. ## Customize Visualization The customization of the visualization is similar to other components. If you want to customize `Visualizer`, `VisBackend` or `VisualizationHook`, you can refer to [Visualization Doc](https://github.com/open-mmlab/mmengine/blob/main/docs/zh_cn/tutorials/visualization.md) in MMEngine.