# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp import time from functools import partial from typing import Optional import matplotlib.pyplot as plt import numpy as np import torch from mmengine.config import Config, DictAction from mmengine.dataset import pseudo_collate, worker_init_fn from mmengine.dist import get_rank, init_dist from mmengine.logging import MMLogger from mmengine.model.wrappers import MMDistributedDataParallel, is_model_wrapper from mmengine.runner import load_checkpoint from mmengine.utils import mkdir_or_exist from sklearn.manifold import TSNE from torch.utils.data import DataLoader from mmselfsup.models.utils import Extractor from mmselfsup.registry import DATA_SAMPLERS, DATASETS, MODELS from mmselfsup.utils import register_all_modules def parse_args(): parser = argparse.ArgumentParser(description='t-SNE visualization') parser.add_argument('config', help='train config file path') parser.add_argument('--checkpoint', default=None, help='checkpoint file') parser.add_argument('--work-dir', help='the dir to save logs and models') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument( '--dataset-config', default='configs/benchmarks/classification/tsne_imagenet.py', help='extract dataset config file path') parser.add_argument( '--max-num-class', type=int, default=20, help='the maximum number of classes to apply t-SNE algorithms, now the' 'function supports maximum 20 classes') parser.add_argument('--seed', type=int, default=0, help='random seed') parser.add_argument( '--deterministic', action='store_true', help='whether to set deterministic options for CUDNN backend.') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') # t-SNE settings parser.add_argument( '--n-components', type=int, default=2, help='the dimension of results') parser.add_argument( '--perplexity', type=float, default=30.0, help='The perplexity is related to the number of nearest neighbors' 'that is used in other manifold learning algorithms.') parser.add_argument( '--early-exaggeration', type=float, default=12.0, help='Controls how tight natural clusters in the original space are in' 'the embedded space and how much space will be between them.') parser.add_argument( '--learning-rate', type=float, default=200.0, help='The learning rate for t-SNE is usually in the range' '[10.0, 1000.0]. If the learning rate is too high, the data may look' 'like a ball with any point approximately equidistant from its nearest' 'neighbours. If the learning rate is too low, most points may look' 'compressed in a dense cloud with few outliers.') parser.add_argument( '--n-iter', type=int, default=1000, help='Maximum number of iterations for the optimization. Should be at' 'least 250.') parser.add_argument( '--n-iter-without-progress', type=int, default=300, help='Maximum number of iterations without progress before we abort' 'the optimization.') parser.add_argument( '--init', type=str, default='random', help='The init method') args = parser.parse_args() return args def main(): args = parse_args() # register all modules in mmselfsup into the registries register_all_modules() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None work_type = args.config.split('/')[1] cfg.work_dir = osp.join('./work_dirs', work_type, osp.splitext(osp.basename(args.config))[0]) # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher) # create work_dir timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) tsne_work_dir = osp.join(cfg.work_dir, f'tsne_{timestamp}/') mkdir_or_exist(osp.abspath(tsne_work_dir)) # init the logger before other steps log_file = osp.join(tsne_work_dir, 'extract.log') logger = MMLogger.get_instance( 'mmselfsup', logger_name='mmselfsup', log_file=log_file, log_level=cfg.log_level) # build the dataset dataset_cfg = Config.fromfile(args.dataset_config) extract_dataloader_cfg = dataset_cfg.get('extract_dataloader') extract_dataset_cfg = extract_dataloader_cfg.pop('dataset') if isinstance(extract_dataset_cfg, dict): dataset = DATASETS.build(extract_dataset_cfg) if hasattr(dataset, 'full_init'): dataset.full_init() # compress dataset, select that the label is less then max_num_class subset_idx_list = [] for i in range(len(dataset)): if dataset.get_data_info(i)['gt_label'] < args.max_num_class: subset_idx_list.append(i) dataset.get_subset_(subset_idx_list) logger.info(f'Apply t-SNE to visualize {len(subset_idx_list)} samples.') # build sampler sampler_cfg = extract_dataloader_cfg.pop('sampler') if isinstance(sampler_cfg, dict): sampler = DATA_SAMPLERS.build( sampler_cfg, default_args=dict(dataset=dataset, seed=args.seed)) # build dataloader init_fn: Optional[partial] if args.seed is not None: init_fn = partial( worker_init_fn, num_workers=extract_dataloader_cfg.get('num_workers'), rank=get_rank(), seed=args.seed) else: init_fn = None tsne_dataloader = DataLoader( dataset=dataset, sampler=sampler, collate_fn=pseudo_collate, worker_init_fn=init_fn, **extract_dataloader_cfg) # build the model # get backbone out_indices from pool_cfg in tsne_dataset_config cfg.model.backbone.out_indices = dataset_cfg.pool_cfg.get( 'in_indices', [4]) logger.info( f'The output indices of backbone is {cfg.model.backbone.out_indices}.') model = MODELS.build(cfg.model) model.init_weights() # model is determined in this priority: init_cfg > checkpoint > random if hasattr(cfg.model.backbone, 'init_cfg'): if getattr(cfg.model.backbone.init_cfg, 'type', None) == 'Pretrained': logger.info( f'Use pretrained model: ' f'{cfg.model.backbone.init_cfg.checkpoint} to extract features' ) elif args.checkpoint is not None: logger.info(f'Use checkpoint: {args.checkpoint} to extract features') load_checkpoint(model, args.checkpoint, map_location='cpu') else: logger.info('No pretrained or checkpoint is given, use random init.') if torch.cuda.is_available(): model = model.cuda() if distributed: model = MMDistributedDataParallel( module=model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) if is_model_wrapper(model): model = model.module # build extractor and extract features extractor = Extractor( extract_dataloader=tsne_dataloader, seed=args.seed, pool_cfg=dataset_cfg.pool_cfg, dist_mode=distributed) features = extractor(model) labels = tsne_dataloader.dataset.get_gt_labels() # save features mkdir_or_exist(f'{tsne_work_dir}features/') logger.info(f'Save features to {tsne_work_dir}features/') if distributed: rank = get_rank() if rank == 0: for key, val in features.items(): output_file = \ f'{tsne_work_dir}features/{dataset_cfg.name}_{key}.npy' np.save(output_file, val) else: for key, val in features.items(): output_file = \ f'{tsne_work_dir}features/{dataset_cfg.name}_{key}.npy' np.save(output_file, val) # build t-SNE model tsne_model = TSNE( n_components=args.n_components, perplexity=args.perplexity, early_exaggeration=args.early_exaggeration, learning_rate=args.learning_rate, n_iter=args.n_iter, n_iter_without_progress=args.n_iter_without_progress, init=args.init) # run and get results mkdir_or_exist(f'{tsne_work_dir}saved_pictures/') logger.info('Running t-SNE......') for key, val in features.items(): result = tsne_model.fit_transform(val) res_min, res_max = result.min(0), result.max(0) res_norm = (result - res_min) / (res_max - res_min) plt.figure(figsize=(10, 10)) plt.scatter( res_norm[:, 0], res_norm[:, 1], alpha=1.0, s=15, c=labels, cmap='tab20') plt.savefig(f'{tsne_work_dir}saved_pictures/{key}.png') logger.info(f'Saved results to {tsne_work_dir}saved_pictures/') if __name__ == '__main__': main()