# Copyright (c) OpenMMLab. All rights reserved. import platform from unittest.mock import MagicMock import pytest import torch import mmselfsup from mmselfsup.models.algorithms import DenseCL queue_len = 32 feat_dim = 4 momentum = 0.999 loss_lambda = 0.5 backbone = dict( type='ResNet', depth=50, in_channels=3, out_indices=[4], # 0: conv-1, x: stage-x norm_cfg=dict(type='BN')) neck = dict( type='DenseCLNeck', in_channels=2048, hid_channels=4, out_channels=4, num_grid=None) head = dict(type='ContrastiveHead', temperature=0.2) def mock_batch_shuffle_ddp(img): return img, 0 def mock_batch_unshuffle_ddp(img, mock_input): return img def mock_concat_all_gather(img): return img @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit') def test_densecl(): with pytest.raises(AssertionError): alg = DenseCL(backbone=backbone, neck=None, head=head) with pytest.raises(AssertionError): alg = DenseCL(backbone=backbone, neck=neck, head=None) alg = DenseCL( backbone=backbone, neck=neck, head=head, queue_len=queue_len, feat_dim=feat_dim, momentum=momentum, loss_lambda=loss_lambda) assert alg.queue.size() == torch.Size([feat_dim, queue_len]) assert alg.queue2.size() == torch.Size([feat_dim, queue_len]) fake_input = torch.randn((16, 3, 224, 224)) with pytest.raises(AssertionError): fake_out = alg.forward_train(fake_input) fake_out = alg.forward_test(fake_input) assert fake_out[0] is None assert fake_out[2] is None assert fake_out[1].size() == torch.Size([16, 2048, 49]) mmselfsup.models.algorithms.densecl.batch_shuffle_ddp = MagicMock( side_effect=mock_batch_shuffle_ddp) mmselfsup.models.algorithms.densecl.batch_unshuffle_ddp = MagicMock( side_effect=mock_batch_unshuffle_ddp) mmselfsup.models.algorithms.densecl.concat_all_gather = MagicMock( side_effect=mock_concat_all_gather) fake_loss = alg.forward_train([fake_input, fake_input]) assert fake_loss['loss_single'] > 0 assert fake_loss['loss_dense'] > 0 assert alg.queue_ptr.item() == 16 assert alg.queue2_ptr.item() == 16 # test train step with 2 keys in loss fake_outputs = alg.train_step(dict(img=[fake_input, fake_input]), None) assert fake_outputs['loss'].item() > -1 assert fake_outputs['num_samples'] == 16