# Copyright (c) OpenMMLab. All rights reserved. import copy import platform import pytest import torch from mmselfsup.core import SelfSupDataSample from mmselfsup.models import MoCoV3 backbone = dict( type='MoCoV3ViT', arch='mocov3-small', # embed_dim = 384 img_size=224, patch_size=16, stop_grad_conv1=True) neck = dict( type='NonLinearNeck', in_channels=384, hid_channels=2, out_channels=2, num_layers=2, with_bias=False, with_last_bn=True, with_last_bn_affine=False, with_last_bias=False, with_avg_pool=False, vit_backbone=True, norm_cfg=dict(type='BN1d')) head = dict( type='MoCoV3Head', predictor=dict( type='NonLinearNeck', in_channels=2, hid_channels=2, out_channels=2, num_layers=2, with_bias=False, with_last_bn=True, with_last_bn_affine=False, with_last_bias=False, with_avg_pool=False, norm_cfg=dict(type='BN1d')), loss=dict(type='mmcls.CrossEntropyLoss', loss_weight=2 * 0.2), temperature=0.2) @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit') def test_mocov3(): data_preprocessor = dict( mean=(123.675, 116.28, 103.53), std=(58.395, 57.12, 57.375), bgr_to_rgb=True) alg = MoCoV3( backbone=backbone, neck=neck, head=head, data_preprocessor=copy.deepcopy(data_preprocessor)) fake_data = [{ 'inputs': [torch.randn((3, 224, 224)), torch.randn((3, 224, 224))], 'data_sample': SelfSupDataSample() } for _ in range(2)] # test extract fake_inputs, fake_data_samples = alg.data_preprocessor(fake_data) fake_feats = alg(fake_inputs, fake_data_samples, mode='tensor') assert fake_feats[0][0].size() == torch.Size([2, 384, 14, 14]) assert fake_feats[0][1].size() == torch.Size([2, 384])