# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import random import numpy as np import pytest import torch import torchvision from mmcv import imread from mmcv.transforms import Compose from PIL import Image import mmselfsup.datasets.pipelines.transforms as mmselfsup_transforms from mmselfsup.datasets.pipelines import ( BEiTMaskGenerator, ColorJitter, Lighting, RandomGaussianBlur, RandomPatchWithLabels, RandomResizedCropAndInterpolationWithTwoPic, RandomRotationWithLabels, RandomSolarize, SimMIMMaskGenerator) def test_simmim_mask_gen(): transform = dict( input_size=192, mask_patch_size=32, model_patch_size=4, mask_ratio=0.6) img = torch.rand((3, 192, 192)) results = {'img': img} module = SimMIMMaskGenerator(**transform) results = module(results) # test transform assert list(results['img'].shape) == [3, 192, 192] assert list(results['mask'].shape) == [48, 48] # test repr assert isinstance(str(module), str) def test_beit_mask_gen(): transform = dict( input_size=(14, 14), num_masking_patches=75, max_num_patches=None, min_num_patches=16) module = BEiTMaskGenerator(**transform) results = {} results = module(results) # test transform assert list(results['mask'].shape) == [14, 14] # test repr assert isinstance(str(module), str) def test_random_resize_crop_with_two_pic(): transform = dict( size=224, second_size=112, interpolation='bicubic', second_interpolation='lanczos', scale=(0.08, 1.0)) module = RandomResizedCropAndInterpolationWithTwoPic(**transform) fake_input = torch.rand((224, 224, 3)).numpy().astype(np.uint8) results = {'img': fake_input} results = module(results) # test transform assert list(results['img'][0].shape) == [224, 224, 3] assert list(results['img'][1].shape) == [112, 112, 3] # test repr assert isinstance(str(module), str) def test_lighting(): with pytest.raises(AssertionError): transform = Lighting(eigval=1) with pytest.raises(AssertionError): transform = Lighting(eigvec=1) with pytest.raises(AssertionError): transform = Lighting(eigvec=[1]) original_img = np.ones((8, 8, 3), dtype=np.uint8) results = dict(img=original_img) transform = Lighting() assert isinstance(str(transform), str) results = transform(results) assert results['img'].shape == original_img.shape transform = Lighting(alphastd=0., to_rgb=False) results = transform(dict(img=original_img)) assert np.equal(results['img'], original_img).all() def test_random_gaussiablur(): with pytest.raises(AssertionError): transform = RandomGaussianBlur(sigma_min=0.1, sigma_max=1.0, prob=-1) original_img = np.ones((8, 8, 3), dtype=np.uint8) results = dict(img=original_img) transform = RandomGaussianBlur(sigma_min=0.1, sigma_max=1.0) assert isinstance(str(transform), str) results = transform(results) assert results['img'].shape == original_img.shape def test_random_solarize(): with pytest.raises(AssertionError): transform = RandomSolarize(prob=-1) original_img = np.ones((8, 8, 3), dtype=np.uint8) results = dict(img=original_img) transform = RandomSolarize() assert isinstance(str(transform), str) results = transform(results) assert results['img'].shape == original_img.shape def test_random_rotation(): transform = dict() module = RandomRotationWithLabels(**transform) image = torch.rand((224, 224, 3)).numpy().astype(np.uint8) results = {'img': image} results = module(results) # test transform assert list(results['img'].shape) == [4, 3, 224, 224] assert list(results['rot_label'].shape) == [4] assert isinstance(str(module), str) def test_random_patch(): transform = dict() module = RandomPatchWithLabels(**transform) image = torch.rand((224, 224, 3)).numpy().astype(np.uint8) results = {'img': image} results = module(results) # test transform assert list(results['img'].shape) == [8, 6, 53, 53] assert list(results['patch_label'].shape) == [8] assert isinstance(str(module), str) def test_color_jitter(): with pytest.raises(ValueError): transform = ColorJitter(-1, 0, 0, 0) with pytest.raises(ValueError): transform = ColorJitter(0, 0, 0, [0, 1]) with pytest.raises(TypeError): transform = ColorJitter('test', 0, 0, 0) original_img = torch.rand((224, 224, 3)).numpy().astype(np.uint8) results = {'img': original_img} transform = ColorJitter(0, 0, 0, 0) results = transform(results) assert np.equal(results['img'], original_img).all() transform = ColorJitter(0.4, 0.4, 0.2, 0.1) results = transform(results) assert results['img'].shape == original_img.shape assert isinstance(str(transform), str) def test_randomresizedcrop(): ori_img = imread( osp.join(osp.dirname(__file__), '../../data/color.jpg'), 'color') ori_img_pil = Image.open( osp.join(osp.dirname(__file__), '../../data/color.jpg')) seed = random.randint(0, 100) # test when scale is not of kind (min, max) with pytest.raises(ValueError): kwargs = dict( size=(200, 300), scale=(1.0, 0.08), ratio=(3. / 4., 4. / 3.)) aug = [] aug.extend([mmselfsup_transforms.RandomResizedCrop(**kwargs)]) composed_transform = Compose(aug) results = dict() results['img'] = ori_img composed_transform(results)['img'] # test when ratio is not of kind (min, max) with pytest.raises(ValueError): kwargs = dict( size=(200, 300), scale=(0.08, 1.0), ratio=(4. / 3., 3. / 4.)) aug = [] aug.extend([mmselfsup_transforms.RandomResizedCrop(**kwargs)]) composed_transform = Compose(aug) results = dict() results['img'] = ori_img composed_transform(results)['img'] # test crop size is int kwargs = dict(size=200, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.)) random.seed(seed) np.random.seed(seed) aug = [] aug.extend([torchvision.transforms.RandomResizedCrop(**kwargs)]) composed_transform = Compose(aug) baseline = composed_transform(ori_img_pil) random.seed(seed) np.random.seed(seed) aug = [] aug.extend([mmselfsup_transforms.RandomResizedCrop(**kwargs)]) composed_transform = Compose(aug) # test __repr__() print(composed_transform) results = dict() results['img'] = ori_img img = composed_transform(results)['img'] assert np.array(img).shape == (200, 200, 3) assert np.array(baseline).shape == (200, 200, 3) nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero()) nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero()) assert nonzero == nonzero_transform # test crop size < image size kwargs = dict(size=(200, 300), scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.)) random.seed(seed) np.random.seed(seed) aug = [] aug.extend([torchvision.transforms.RandomResizedCrop(**kwargs)]) composed_transform = Compose(aug) baseline = composed_transform(ori_img_pil) random.seed(seed) np.random.seed(seed) aug = [] aug.extend([mmselfsup_transforms.RandomResizedCrop(**kwargs)]) composed_transform = Compose(aug) results = dict() results['img'] = ori_img img = composed_transform(results)['img'] assert np.array(img).shape == (200, 300, 3) assert np.array(baseline).shape == (200, 300, 3) nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero()) nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero()) assert nonzero == nonzero_transform # test crop size > image size kwargs = dict(size=(600, 700), scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.)) random.seed(seed) np.random.seed(seed) aug = [] aug.extend([torchvision.transforms.RandomResizedCrop(**kwargs)]) composed_transform = Compose(aug) baseline = composed_transform(ori_img_pil) random.seed(seed) np.random.seed(seed) aug = [] aug.extend([mmselfsup_transforms.RandomResizedCrop(**kwargs)]) composed_transform = Compose(aug) results = dict() results['img'] = ori_img img = composed_transform(results)['img'] assert np.array(img).shape == (600, 700, 3) assert np.array(baseline).shape == (600, 700, 3) nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero()) nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero()) assert nonzero == nonzero_transform # test cropping the whole image kwargs = dict( size=(ori_img.shape[0], ori_img.shape[1]), scale=(1.0, 2.0), ratio=(1.0, 2.0)) random.seed(seed) np.random.seed(seed) aug = [] aug.extend([torchvision.transforms.RandomResizedCrop(**kwargs)]) composed_transform = Compose(aug) baseline = composed_transform(ori_img_pil) random.seed(seed) np.random.seed(seed) aug = [] aug.extend([mmselfsup_transforms.RandomResizedCrop(**kwargs)]) composed_transform = Compose(aug) results = dict() results['img'] = ori_img img = composed_transform(results)['img'] assert np.array(img).shape == (ori_img.shape[0], ori_img.shape[1], 3) assert np.array(baseline).shape == (ori_img.shape[0], ori_img.shape[1], 3) nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero()) nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero()) assert nonzero == nonzero_transform # test central crop when in_ratio < min(ratio) kwargs = dict( size=(ori_img.shape[0], ori_img.shape[1]), scale=(1.0, 2.0), ratio=(2., 3.)) random.seed(seed) np.random.seed(seed) aug = [] aug.extend([torchvision.transforms.RandomResizedCrop(**kwargs)]) composed_transform = Compose(aug) baseline = composed_transform(ori_img_pil) random.seed(seed) np.random.seed(seed) aug = [] aug.extend([mmselfsup_transforms.RandomResizedCrop(**kwargs)]) composed_transform = Compose(aug) results = dict() results['img'] = ori_img img = composed_transform(results)['img'] assert np.array(img).shape == (ori_img.shape[0], ori_img.shape[1], 3) assert np.array(baseline).shape == (ori_img.shape[0], ori_img.shape[1], 3) nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero()) nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero()) assert nonzero == nonzero_transform # test central crop when in_ratio > max(ratio) kwargs = dict( size=(ori_img.shape[0], ori_img.shape[1]), scale=(1.0, 2.0), ratio=(3. / 4., 1)) random.seed(seed) np.random.seed(seed) aug = [] aug.extend([torchvision.transforms.RandomResizedCrop(**kwargs)]) composed_transform = Compose(aug) baseline = composed_transform(ori_img_pil) random.seed(seed) np.random.seed(seed) aug = [] aug.extend([mmselfsup_transforms.RandomResizedCrop(**kwargs)]) composed_transform = Compose(aug) results = dict() results['img'] = ori_img img = composed_transform(results)['img'] assert np.array(img).shape == (ori_img.shape[0], ori_img.shape[1], 3) assert np.array(baseline).shape == (ori_img.shape[0], ori_img.shape[1], 3) nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero()) nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero()) assert nonzero == nonzero_transform # test different interpolation types for mode in ['nearest', 'bilinear', 'bicubic', 'area', 'lanczos']: kwargs = dict( size=(600, 700), scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=mode) aug = [] aug.extend([mmselfsup_transforms.RandomResizedCrop(**kwargs)]) composed_transform = Compose(aug) results = dict() results['img'] = ori_img img = composed_transform(results)['img'] assert img.shape == (600, 700, 3)