# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp import time import matplotlib.pyplot as plt import mmcv import numpy as np import torch from mmcv import Config, DictAction from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmcv.runner import get_dist_info, init_dist, load_checkpoint from sklearn.manifold import TSNE from mmselfsup.apis import set_random_seed from mmselfsup.datasets import build_dataloader, build_dataset from mmselfsup.models import build_algorithm from mmselfsup.models.utils import MultiExtractProcess from mmselfsup.utils import get_root_logger def parse_args(): parser = argparse.ArgumentParser(description='t-SNE visualization') parser.add_argument('config', help='train config file path') parser.add_argument('--checkpoint', default=None, help='checkpoint file') parser.add_argument( '--work_dir', help='(Deprecated, please use --work-dir) the dir to save logs and ' 'models') parser.add_argument('--work-dir', help='the dir to save logs and models') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument( '--dataset_config', default='configs/benchmarks/classification/tsne_imagenet.py', help='(Deprecated, please use --dataset-config) ' 'extract dataset config file path') parser.add_argument( '--dataset-config', default='configs/benchmarks/classification/tsne_imagenet.py', help='extract dataset config file path') parser.add_argument( '--layer_ind', type=str, default='0,1,2,3,4', help='(Deprecated, please use --layer-ind) layer indices, ' 'separated by comma, e.g., "0,1,2,3,4"') parser.add_argument( '--layer-ind', type=str, default='0,1,2,3,4', help='layer indices, separated by comma, e.g., "0,1,2,3,4"') parser.add_argument( '--pool_type', choices=['specified', 'adaptive'], default='specified', help='(Deprecated, please use --pool-type) Pooling type in ' ':class:`MultiPooling`') parser.add_argument( '--pool-type', choices=['specified', 'adaptive'], default='specified', help='Pooling type in :class:`MultiPooling`') parser.add_argument( '--max_num_class', type=int, default=20, help='(Deprecated, please use --max-num-class) the maximum number ' 'of classes to apply t-SNE algorithms, now the function supports ' 'maximum 20 classes') parser.add_argument( '--max-num-class', type=int, default=20, help='the maximum number of classes to apply t-SNE algorithms, now the' 'function supports maximum 20 classes') parser.add_argument('--seed', type=int, default=0, help='random seed') parser.add_argument( '--deterministic', action='store_true', help='whether to set deterministic options for CUDNN backend.') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') # t-SNE settings parser.add_argument( '--n_components', type=int, default=2, help='(Deprecated, please use --n-components) the dimension of results' ) parser.add_argument( '--n-components', type=int, default=2, help='the dimension of results') parser.add_argument( '--perplexity', type=float, default=30.0, help='The perplexity is related to the number of nearest neighbors' 'that is used in other manifold learning algorithms.') parser.add_argument( '--early_exaggeration', type=float, default=12.0, help='(Deprecated, please use --early-exaggeration) Controls how ' 'tight natural clusters in the original space are in the embedded ' 'space and how much space will be between them.') parser.add_argument( '--early-exaggeration', type=float, default=12.0, help='Controls how tight natural clusters in the original space are in' 'the embedded space and how much space will be between them.') parser.add_argument( '--learning_rate', type=float, default=200.0, help='(Deprecated, please use --learning-rate) The learning rate ' 'for t-SNE is usually in the range [10.0, 1000.0]. ' 'If the learning rate is too high, the data may look' 'like a ball with any point approximately equidistant from its nearest' 'neighbours. If the learning rate is too low, most points may look' 'compressed in a dense cloud with few outliers.') parser.add_argument( '--learning-rate', type=float, default=200.0, help='The learning rate for t-SNE is usually in the range' '[10.0, 1000.0]. If the learning rate is too high, the data may look' 'like a ball with any point approximately equidistant from its nearest' 'neighbours. If the learning rate is too low, most points may look' 'compressed in a dense cloud with few outliers.') parser.add_argument( '--n_iter', type=int, default=1000, help='(Deprecated, please use --n-iter) Maximum number of iterations ' 'for the optimization. Should be at least 250.') parser.add_argument( '--n-iter', type=int, default=1000, help='Maximum number of iterations for the optimization. Should be at' 'least 250.') parser.add_argument( '--n_iter_without_progress', type=int, default=300, help='(Deprecated, please use --n-iter-without-progress) Maximum ' 'number of iterations without progress before we abort the ' 'optimization.') parser.add_argument( '--n-iter-without-progress', type=int, default=300, help='Maximum number of iterations without progress before we abort' 'the optimization.') parser.add_argument( '--init', type=str, default='random', help='The init method') args = parser.parse_args() return args def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None work_type = args.config.split('/')[1] cfg.work_dir = osp.join('./work_dirs', work_type, osp.splitext(osp.basename(args.config))[0]) # get out_indices from args layer_ind = [int(idx) for idx in args.layer_ind.split(',')] cfg.model.backbone.out_indices = layer_ind # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # create work_dir and init the logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) tsne_work_dir = osp.join(cfg.work_dir, f'tsne_{timestamp}/') mmcv.mkdir_or_exist(osp.abspath(tsne_work_dir)) log_file = osp.join(tsne_work_dir, 'extract.log') logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # set random seeds if args.seed is not None: logger.info(f'Set random seed to {args.seed}, ' f'deterministic: {args.deterministic}') set_random_seed(args.seed, deterministic=args.deterministic) # build the dataloader dataset_cfg = mmcv.Config.fromfile(args.dataset_config) dataset = build_dataset(dataset_cfg.data.extract) # compress dataset, select that the label is less then max_num_class tmp_infos = [] for i in range(len(dataset)): if dataset.data_source.data_infos[i]['gt_label'] < args.max_num_class: tmp_infos.append(dataset.data_source.data_infos[i]) dataset.data_source.data_infos = tmp_infos logger.info(f'Apply t-SNE to visualize {len(dataset)} samples.') if 'imgs_per_gpu' in cfg.data: logger.warning('"imgs_per_gpu" is deprecated. ' 'Please use "samples_per_gpu" instead') if 'samples_per_gpu' in cfg.data: logger.warning( f'Got "imgs_per_gpu"={cfg.data.imgs_per_gpu} and ' f'"samples_per_gpu"={cfg.data.samples_per_gpu}, "imgs_per_gpu"' f'={cfg.data.imgs_per_gpu} is used in this experiments') else: logger.warning( 'Automatically set "samples_per_gpu"="imgs_per_gpu"=' f'{cfg.data.imgs_per_gpu} in this experiments') cfg.data.samples_per_gpu = cfg.data.imgs_per_gpu data_loader = build_dataloader( dataset, samples_per_gpu=dataset_cfg.data.samples_per_gpu, workers_per_gpu=dataset_cfg.data.workers_per_gpu, dist=distributed, shuffle=False) # build the model model = build_algorithm(cfg.model) model.init_weights() # model is determined in this priority: init_cfg > checkpoint > random if hasattr(cfg.model.backbone, 'init_cfg'): if getattr(cfg.model.backbone.init_cfg, 'type', None) == 'Pretrained': logger.info( f'Use pretrained model: ' f'{cfg.model.backbone.init_cfg.checkpoint} to extract features' ) elif args.checkpoint is not None: logger.info(f'Use checkpoint: {args.checkpoint} to extract features') load_checkpoint(model, args.checkpoint, map_location='cpu') else: logger.info('No pretrained or checkpoint is given, use random init.') if not distributed: model = MMDataParallel(model, device_ids=[0]) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) # build extraction processor and run extractor = MultiExtractProcess( pool_type=args.pool_type, backbone='resnet50', layer_indices=layer_ind) features = extractor.extract(model, data_loader, distributed=distributed) labels = dataset.data_source.get_gt_labels() # save features mmcv.mkdir_or_exist(f'{tsne_work_dir}features/') logger.info(f'Save features to {tsne_work_dir}features/') if distributed: rank, _ = get_dist_info() if rank == 0: for key, val in features.items(): output_file = \ f'{tsne_work_dir}features/{dataset_cfg.name}_{key}.npy' np.save(output_file, val) else: for key, val in features.items(): output_file = \ f'{tsne_work_dir}features/{dataset_cfg.name}_{key}.npy' np.save(output_file, val) # build t-SNE model tsne_model = TSNE( n_components=args.n_components, perplexity=args.perplexity, early_exaggeration=args.early_exaggeration, learning_rate=args.learning_rate, n_iter=args.n_iter, n_iter_without_progress=args.n_iter_without_progress, init=args.init) # run and get results mmcv.mkdir_or_exist(f'{tsne_work_dir}saved_pictures/') logger.info('Running t-SNE......') for key, val in features.items(): result = tsne_model.fit_transform(val) res_min, res_max = result.min(0), result.max(0) res_norm = (result - res_min) / (res_max - res_min) plt.figure(figsize=(10, 10)) plt.scatter( res_norm[:, 0], res_norm[:, 1], alpha=1.0, s=15, c=labels, cmap='tab20') plt.savefig(f'{tsne_work_dir}saved_pictures/{key}.png') logger.info(f'Saved results to {tsne_work_dir}saved_pictures/') if __name__ == '__main__': main()