# 检测 - [检测](#检测) - [训练](#训练) - [测试](#测试) 这里,我们倾向使用 MMDetection 做检测任务。首先确保您已经安装了 [MIM](https://github.com/open-mmlab/mim),这也是 OpenMMLab 的一个项目。 ```shell pip install openmim mim install 'mmdet>=3.0.0rc0' ``` 非常容易安装这个包。 此外,请参考 MMDetection 的[安装](https://mmdetection.readthedocs.io/en/dev-3.x/get_started.html)和[数据准备](https://mmdetection.readthedocs.io/en/dev-3.x/user_guides/dataset_prepare.html) ## 训练 安装完后,您可以使用如下的简单命令运行 MMDetection。 ```shell # distributed version bash tools/benchmarks/mmdetection/mim_dist_train_c4.sh ${CONFIG} ${PRETRAIN} ${GPUS} bash tools/benchmarks/mmdetection/mim_dist_train_fpn.sh ${CONFIG} ${PRETRAIN} ${GPUS} # slurm version bash tools/benchmarks/mmdetection/mim_slurm_train_c4.sh ${PARTITION} ${CONFIG} ${PRETRAIN} bash tools/benchmarks/mmdetection/mim_slurm_train_fpn.sh ${PARTITION} ${CONFIG} ${PRETRAIN} ``` 备注: - `${CONFIG}`: 使用`configs/benchmarks/mmdetection/`下的配置文件。由于 OpenMMLab 的算法库支持跨不同存储库引用配置文件,因此我们可以轻松使用 MMDetection 的配置文件,例如: ```shell _base_ = 'mmdet::mask_rcnn/mask-rcnn_r50-caffe-c4_1x_coco.py' ``` 从头开始写您的配置文件也是支持的。 - `${PRETRAIN}`:预训练模型文件 - `${GPUS}`: 您想用于训练的 GPU 数量,对于检测任务,我们默认采用 8 块 GPU。 例子: ```shell bash ./tools/benchmarks/mmdetection/mim_dist_train_c4.sh \ configs/benchmarks/mmdetection/coco/mask-rcnn_r50-c4_ms-1x_coco.py \ https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/byol_resnet50_16xb256-coslr-200e_in1k_20220825-de817331.pth 8 ``` 或者您想用 [detectron2](https://github.com/facebookresearch/detectron2) 来做检测任务,我们也提供了一些配置文件。 请参考 [INSTALL.md](https://github.com/facebookresearch/detectron2/blob/main/INSTALL.md) 用于安装并按照 detectron2 需要的[目录结构](https://github.com/facebookresearch/detectron2/tree/main/datasets)准备您的数据集。 ```shell conda activate detectron2 # use detectron2 environment here, otherwise use open-mmlab environment cd tools/benchmarks/detectron2 python convert-pretrain-to-detectron2.py ${WEIGHT_FILE} ${OUTPUT_FILE} # must use .pkl as the output extension. bash run.sh ${DET_CFG} ${OUTPUT_FILE} ``` ## 测试 在训练之后,您可以运行如下命令测试您的模型。 ```shell # distributed version bash tools/benchmarks/mmdetection/mim_dist_test.sh ${CONFIG} ${CHECKPOINT} ${GPUS} # slurm version bash tools/benchmarks/mmdetection/mim_slurm_test.sh ${PARTITION} ${CONFIG} ${CHECKPOINT} ``` 备注: - `${CHECKPOINT}`:您想测试的训练好的检测模型。 例子: ```shell bash ./tools/benchmarks/mmdetection/mim_dist_test.sh \ configs/benchmarks/mmdetection/coco/mask-rcnn_r50_fpn_ms-1x_coco.py \ https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/byol_resnet50_16xb256-coslr-200e_in1k_20220825-de817331.pth 8 ```