mmselfsup/README_zh-CN.md

271 lines
17 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

<div align="center">
<img src="./resources/mmselfsup_logo.png" width="500"/>
<div>&nbsp;</div>
<div align="center">
<b><font size="5">OpenMMLab 官网</font></b>
<sup>
<a href="https://openmmlab.com">
<i><font size="4">HOT</font></i>
</a>
</sup>
&nbsp;&nbsp;&nbsp;&nbsp;
<b><font size="5">OpenMMLab 开放平台</font></b>
<sup>
<a href="https://platform.openmmlab.com">
<i><font size="4">TRY IT OUT</font></i>
</a>
</sup>
</div>
<div>&nbsp;</div>
[![PyPI](https://img.shields.io/pypi/v/mmselfsup)](https://pypi.org/project/mmselfsup)
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmselfsup.readthedocs.io/en/dev-1.x/)
[![badge](https://github.com/open-mmlab/mmselfsup/workflows/build/badge.svg)](https://github.com/open-mmlab/mmselfsup/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmselfsup/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmselfsup)
[![license](https://img.shields.io/github/license/open-mmlab/mmselfsup.svg)](https://github.com/open-mmlab/mmselfsup/blob/main/LICENSE)
[![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmselfsup.svg)](https://github.com/open-mmlab/mmselfsup/issues)
[📘使用文档](https://mmselfsup.readthedocs.io/zh_CN/latest/) |
[🛠️安装教程](https://mmselfsup.readthedocs.io/zh_CN/latest/get_started.html) |
[👀模型库](https://mmselfsup.readthedocs.io/zh_CN/latest/model_zoo.html) |
[🆕更新日志](https://mmselfsup.readthedocs.io/zh_CN/latest/notes/changelog.html) |
[🤔报告问题](https://github.com/open-mmlab/mmselfsup/issues/new/choose)
<img src="https://user-images.githubusercontent.com/36138628/230306412-43a5f316-bd54-4d2a-b196-210656e74683.png" width="500"/>
🌟 MMPreTrain 旨在提供各种强大的预训练主干网络,并支持了不同的预训练策略。
:point_right: **MMPreTrain 1.0 版本即将正式发布,欢迎大家 [试用](https://github.com/open-mmlab/mmclassification) 并 [参与讨论](https://github.com/open-mmlab/mmclassification/discussions)** :point_left:
</div>
<div align="center">
[English](README.md) | 简体中文
</div>
</div>
<div align="center">
<a href="https://openmmlab.medium.com/" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/219255827-67c1a27f-f8c5-46a9-811d-5e57448c61d1.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://discord.gg/raweFPmdzG" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://twitter.com/OpenMMLab" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://www.youtube.com/openmmlab" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://space.bilibili.com/1293512903" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/219026751-d7d14cce-a7c9-4e82-9942-8375fca65b99.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://www.zhihu.com/people/openmmlab" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a>
</div>
## 介绍
MMSelfSup 是一个基于 PyTorch 实现的开源自监督表征学习工具箱,是 [OpenMMLab](https://openmmlab.com/) 项目成员之一。
主分支代码支持 **PyTorch 1.8** 及以上的版本。
### 主要特性
- **多方法集成**
MMSelfSup 提供了多种前沿的自监督学习算法,大部分的自监督预训练学习都设置相同,以在基准中获得更加公平的比较。
- **模块化设计**
MMSelfSup 遵照 OpenMMLab 项目一贯的设计理念,进行模块化设计,便于用户自定义实现自己的算法。
- **标准化的性能评测**
MMSelfSup 拥有丰富的基准进行评估和测试,包括线性评估, 线性特征的 SVM / Low-shot SVM, 半监督分类, 目标检测和语义分割。
- **兼容性**
兼容 OpenMMLab 各大算法库,拥有丰富的下游评测任务和预训练模型的应用。
## 更新
**MMSelfSup v1.0.0 正式版已发布,请参考 [迁移指南](https://mmselfsup.readthedocs.io/zh_CN/1.x/migration.html) 以了解更多细节。**
**v1.0.0** 版本已经在 2023.4.6 发布。
- 支持了 `PixMIM` 自监督算法
-`projects/dino/` 支持了 `DINO`
- 重构 file io 接口
- 完善部分文档
**v1.0.0rc6** 版本已经在 2023.2.10 发布。
-`projects/maskfeat_video/` 支持了 `MaskFeat` 的视频数据预训练
- 将部分文档翻译成中文
**v1.0.0rc5** 版本已经在 2022.12.30 发布。
- 支持了 `BEiT v2`, `MixMIM`, `EVA`
- 支持了模型分析工具 `ShapeBias`
- 添加 FGIA ACCV 2022 比赛第一名方案
- 重构了 `t-SNE`
请参考 [更新日志](https://mmselfsup.readthedocs.io/zh_CN/latest/notes/changelog.html) 获取更多细节和历史版本信息。
MMSelfSup 1.x 和 0.x 的不同点写在 [迁移文档](https://mmselfsup.readthedocs.io/zh_CN/latest/migration.html) 中。
## 安装
MMSelfSup 依赖 [PyTorch](https://pytorch.org/), [MMCV](https://github.com/open-mmlab/mmcv), [MMEngine](https://github.com/open-mmlab/mmengine) 和 [MMClassification](https://github.com/open-mmlab/mmclassification)。
请参考 [安装文档](https://mmselfsup.readthedocs.io/zh_CN/latest/get_started.html) 获取更详细的安装指南。
## 快速入门
我们针对基础使用和进阶用法提供了 [用户指引](https://mmselfsup.readthedocs.io/zh_CN/latest/user_guides/index.html)
Pretrain
- [Config](https://mmselfsup.readthedocs.io/zh_CN/latest/user_guides/1_config.html)
- [Prepare Dataset](https://mmselfsup.readthedocs.io/zh_CN/latest/user_guides/2_dataset_prepare.html)
- [Pretrain with Existing Models](https://mmselfsup.readthedocs.io/zh_CN/latest/user_guides/3_pretrain.html)
Downetream Tasks
- [Classification](https://mmselfsup.readthedocs.io/zh_CN/latest/user_guides/classification.html)
- [Detection](https://mmselfsup.readthedocs.io/zh_CN/latest/user_guides/detection.html)
- [Segmentation](https://mmselfsup.readthedocs.io/zh_CN/latest/user_guides/segmentation.html)
Useful Tools
- [Visualization](https://mmselfsup.readthedocs.io/zh_CN/latest/user_guides/visualization.html)
- [Analysis Tools](https://mmselfsup.readthedocs.io/zh_CN/latest/user_guides/analysis_tools.html)
我们也提供了 [进阶指引](https://mmselfsup.readthedocs.io/zh_CN/latest/advanced_guides/index.html) 和 [Colab 教程](https://github.com/open-mmlab/mmselfsup/blob/main/demo/mmselfsup_colab_tutorial.ipynb)。
如果遇到问题,请参考 [常见问题解答](https://mmselfsup.readthedocs.io/zh_CN/latest/notes/faq.html)。
## 模型库
请参考 [模型库](https://mmselfsup.readthedocs.io/zh_CN/latest/model_zoo.html) 查看我们更加全面的模型基准结果。
目前已支持的算法:
- [x] [Relative Location (ICCV'2015)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/relavive_loc)
- [x] [Rotation Prediction (ICLR'2018)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/rotation_pred)
- [x] [DeepCluster (ECCV'2018)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/deepcluster)
- [x] [NPID (CVPR'2018)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/npid)
- [x] [ODC (CVPR'2020)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/odc)
- [x] [MoCo v1 (CVPR'2020)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/mocov1)
- [x] [SimCLR (ICML'2020)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/simclr)
- [x] [MoCo v2 (arXiv'2020)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/mocov2)
- [x] [BYOL (NeurIPS'2020)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/byol)
- [x] [SwAV (NeurIPS'2020)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/swav)
- [x] [DenseCL (CVPR'2021)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/densecl)
- [x] [SimSiam (CVPR'2021)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/simsiam)
- [x] [Barlow Twins (ICML'2021)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/barlowtwins)
- [x] [MoCo v3 (ICCV'2021)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/mocov3)
- [x] [BEiT (ICLR'2022)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/beit)
- [x] [MAE (CVPR'2022)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/mae)
- [x] [SimMIM (CVPR'2022)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/simmim)
- [x] [MaskFeat (CVPR'2022)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/maskfeat)
- [x] [CAE (arXiv'2022)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/cae)
- [x] [MILAN (arXiv'2022)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/milan)
- [x] [BEiT v2 (arXiv'2022)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/beitv2)
- [x] [EVA (CVPR'2023)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/eva)
- [x] [MixMIM (ArXiv'2022)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/mixmim)
- [x] [PixMIM (ArXiv'2023)](https://github.com/open-mmlab/mmselfsup/tree/main/configs/selfsup/pixmim)
更多的算法实现已经在我们的计划中。
## 基准测试
| 基准测试方法 | 参考设置 |
| -------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| ImageNet Linear Classification (Multi-head) | [Goyal2019](http://openaccess.thecvf.com/content_ICCV_2019/papers/Goyal_Scaling_and_Benchmarking_Self-Supervised_Visual_Representation_Learning_ICCV_2019_paper.pdf) |
| ImageNet Linear Classification (Last) | |
| ImageNet Semi-Sup Classification | |
| Places205 Linear Classification (Multi-head) | [Goyal2019](http://openaccess.thecvf.com/content_ICCV_2019/papers/Goyal_Scaling_and_Benchmarking_Self-Supervised_Visual_Representation_Learning_ICCV_2019_paper.pdf) |
| iNaturalist2018 Linear Classification (Multi-head) | [Goyal2019](http://openaccess.thecvf.com/content_ICCV_2019/papers/Goyal_Scaling_and_Benchmarking_Self-Supervised_Visual_Representation_Learning_ICCV_2019_paper.pdf) |
| PASCAL VOC07 SVM | [Goyal2019](http://openaccess.thecvf.com/content_ICCV_2019/papers/Goyal_Scaling_and_Benchmarking_Self-Supervised_Visual_Representation_Learning_ICCV_2019_paper.pdf) |
| PASCAL VOC07 Low-shot SVM | [Goyal2019](http://openaccess.thecvf.com/content_ICCV_2019/papers/Goyal_Scaling_and_Benchmarking_Self-Supervised_Visual_Representation_Learning_ICCV_2019_paper.pdf) |
| PASCAL VOC07+12 Object Detection | [MoCo](http://openaccess.thecvf.com/content_CVPR_2020/papers/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.pdf) |
| COCO17 Object Detection | [MoCo](http://openaccess.thecvf.com/content_CVPR_2020/papers/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.pdf) |
| Cityscapes Segmentation | [MMSeg](configs/benchmarks/mmsegmentation/cityscapes/fcn_r50-d8_769x769_40k_cityscapes.py) |
| PASCAL VOC12 Aug Segmentation | [MMSeg](configs/benchmarks/mmsegmentation/voc12aug/fcn_r50-d8_512x512_20k_voc12aug.py) |
## 参与贡献
我们非常欢迎任何有助于提升 MMSelfSup 的贡献,请参考 [贡献指南](https://mmselfsup.readthedocs.io/zh_CN/latest/notes/contribution_guide.html) 来了解如何参与贡献。
## 致谢
MMSelfSup 是一款由不同学校和公司共同贡献的开源项目,我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户;同时,我们非常感谢 OpenSelfSup 的原开发者和贡献者。
我们希望该工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现现有算法并开发自己的新模型,从而不断为开源社区提供贡献。
## 引用
如果您发现此项目对您的研究有用,请考虑引用:
```bibtex
@misc{mmselfsup2021,
title={{MMSelfSup}: OpenMMLab Self-Supervised Learning Toolbox and Benchmark},
author={MMSelfSup Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmselfsup}},
year={2021}
}
```
## 开源许可证
该项目采用 [Apache 2.0 开源许可证](LICENSE)。
## OpenMMLab 的其他项目
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab 深度学习模型训练基础库
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab 计算机视觉基础库
- [MMEval](https://github.com/open-mmlab/mmeval): 统一开放的跨框架算法评测库
- [MIM](https://github.com/open-mmlab/mim): MIM 是 OpenMMlab 项目、算法、模型的统一入口
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab 图像分类工具箱
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab 目标检测工具箱
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab 新一代通用 3D 目标检测平台
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab 旋转框检测工具箱与测试基准
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO 系列工具箱和基准测试
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab 语义分割工具箱
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab 全流程文字检测识别理解工具箱
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab 姿态估计工具箱
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 人体参数化模型工具箱与测试基准
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab 自监督学习工具箱与测试基准
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab 模型压缩工具箱与测试基准
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab 少样本学习工具箱与测试基准
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab 新一代视频理解工具箱
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab 一体化视频目标感知平台
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab 光流估计工具箱与测试基准
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab 图像视频编辑工具箱
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab 图片视频生成模型工具箱
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab 模型部署框架
## 欢迎加入 OpenMMLab 社区
扫描下方的二维码可关注 OpenMMLab 团队的 [知乎官方账号](https://www.zhihu.com/people/openmmlab),加入 OpenMMLab 团队的 [官方交流 QQ 群](https://jq.qq.com/?_wv=1027&k=GJP18SjI)添加OpenMMLab 官方小助手微信,加入 MMSelfSup 微信社区。
<div align="center">
<img src="./resources/zhihu_qrcode.jpg" height="400"/> <img src="./resources/qq_group_qrcode.jpg" height="400"/> <img src="./resources/xiaozhushou_weixin_qrcode.jpeg" height="400"/>
</div>
我们会在 OpenMMLab 社区为大家
- 📢 分享 AI 框架的前沿核心技术
- 💻 解读 PyTorch 常用模块源码
- 📰 发布 OpenMMLab 的相关新闻
- 🚀 介绍 OpenMMLab 开发的前沿算法
- 🏃 获取更高效的问题答疑和意见反馈
- 🔥 提供与各行各业开发者充分交流的平台
干货满满 📘,等你来撩 💗OpenMMLab 社区期待您的加入 👬