12 KiB
Tutorial 4: Pretrain with Custom Dataset
In this tutorial, we provide some tips on how to conduct self-supervised learning on your own dataset(without the need of label).
Train MAE on Custom Dataset
In MMSelfSup, We support the CustomDataset
from MMClassification(similar to the ImageFolder
in torchvision
), which is able to read the images within the specified folder directly. You only need to prepare the path information of the custom dataset and edit the config.
Step-1: Get the path of custom dataset
It should be like data/custom_dataset/
Step-2: Choose one config as template
Here, we would like to use configs/selfsup/mae/mae_vit-base-p16_8xb512-coslr-400e_in1k.py
as the example. We first copy this config file and rename it as mae_vit-base-p16_8xb512-coslr-400e_${custom_dataset}.py
.
custom_dataset
: indicate which dataset you used, e.g.,in1k
for ImageNet dataset,coco
for COCO dataset
The content of this config is:
_base_ = [
'../_base_/models/mae_vit-base-p16.py',
'../_base_/datasets/imagenet_mae.py',
'../_base_/schedules/adamw_coslr-200e_in1k.py',
'../_base_/default_runtime.py',
]
# dataset 8 x 512
train_dataloader = dict(batch_size=512, num_workers=8)
# optimizer wrapper
optimizer = dict(
type='AdamW', lr=1.5e-4 * 4096 / 256, betas=(0.9, 0.95), weight_decay=0.05)
optim_wrapper = dict(
type='OptimWrapper',
optimizer=optimizer,
paramwise_cfg=dict(
custom_keys={
'ln': dict(decay_mult=0.0),
'bias': dict(decay_mult=0.0),
'pos_embed': dict(decay_mult=0.),
'mask_token': dict(decay_mult=0.),
'cls_token': dict(decay_mult=0.)
}))
# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=40,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=360,
by_epoch=True,
begin=40,
end=400,
convert_to_iter_based=True)
]
# runtime settings
# pre-train for 400 epochs
train_cfg = dict(max_epochs=400)
default_hooks = dict(
logger=dict(type='LoggerHook', interval=100),
# only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))
# randomness
randomness = dict(seed=0, diff_rank_seed=True)
resume = True
Step-3: Edit the dataset related config
The dataset related config is defined in '../_base_/datasets/imagenet_mae.py'
in _base_
. We then copy the content of dataset config file into our created file mae_vit-base-p16_8xb512-coslr-400e_${custom_dataset}.py
.
- Then we remove the
'../_base_/datasets/imagenet_mae.py'
in_base_
. - Set the
dataset_type = 'mmcls.CustomDataset'
, and the path of the custom datasetdata_root = /dataset/my_custom_dataset
. - Remove the
ann_file
intrain_dataloader
, and edit thedata_prefix
if needed.
The `CustomDataset` is implemented in MMClassification, and we set the `dataset_type=mmcls.CustomDataset`.
And the edited config will be like this:
# >>>>>>>>>>>>>>>>>>>>> Start of Changed >>>>>>>>>>>>>>>>>>>>>>>>>
_base_ = [
'../_base_/models/mae_vit-base-p16.py',
# '../_base_/datasets/imagenet_mae.py',
'../_base_/schedules/adamw_coslr-200e_in1k.py',
'../_base_/default_runtime.py',
]
# custom dataset
dataset_type = 'mmcls.CustomDataset'
data_root = 'data/custom_dataset/'
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
size=224,
scale=(0.2, 1.0),
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])
]
# dataset 8 x 512
train_dataloader = dict(
batch_size=512,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(
type=dataset_type,
data_root=data_root,
# ann_file='meta/train.txt', # removed if you don't have the annotation file
data_prefix=dict(img_path='./'),
pipeline=train_pipeline))
# <<<<<<<<<<<<<<<<<<<<<< End of Changed <<<<<<<<<<<<<<<<<<<<<<<<<<<
# optimizer wrapper
optimizer = dict(
type='AdamW', lr=1.5e-4 * 4096 / 256, betas=(0.9, 0.95), weight_decay=0.05)
optim_wrapper = dict(
type='OptimWrapper',
optimizer=optimizer,
paramwise_cfg=dict(
custom_keys={
'ln': dict(decay_mult=0.0),
'bias': dict(decay_mult=0.0),
'pos_embed': dict(decay_mult=0.),
'mask_token': dict(decay_mult=0.),
'cls_token': dict(decay_mult=0.)
}))
# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=40,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=360,
by_epoch=True,
begin=40,
end=400,
convert_to_iter_based=True)
]
# runtime settings
# pre-train for 400 epochs
train_cfg = dict(max_epochs=400)
default_hooks = dict(
logger=dict(type='LoggerHook', interval=100),
# only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))
# randomness
randomness = dict(seed=0, diff_rank_seed=True)
resume = True
By using the edited config file, you are able to train a self-supervised model with MAE algorithm on the custom dataset.
Train MAE on COCO Dataset
You need to install MMDetection to use the `mmdet.CocoDataset` follow this [documentation](https://github.com/open-mmlab/mmdetection/blob/main/docs/en/get_started.md)
Follow the aforementioned idea, we also present an example of how to train MAE on COCO dataset. The edited file will be like this:
# >>>>>>>>>>>>>>>>>>>>> Start of Changed >>>>>>>>>>>>>>>>>>>>>>>>>
_base_ = [
'../_base_/models/mae_vit-base-p16.py',
# '../_base_/datasets/imagenet_mae.py',
'../_base_/schedules/adamw_coslr-200e_in1k.py',
'../_base_/default_runtime.py',
]
# custom dataset
dataset_type = 'mmdet.CocoDataset'
data_root = 'data/coco/'
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
size=224,
scale=(0.2, 1.0),
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])
]
train_dataloader = dict(
batch_size=128,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_train2017.json',
data_prefix=dict(img='train2017/'),
pipeline=train_pipeline))
# <<<<<<<<<<<<<<<<<<<<<< End of Changed <<<<<<<<<<<<<<<<<<<<<<<<<<<
# optimizer wrapper
optimizer = dict(
type='AdamW', lr=1.5e-4 * 4096 / 256, betas=(0.9, 0.95), weight_decay=0.05)
optim_wrapper = dict(
type='OptimWrapper',
optimizer=optimizer,
paramwise_cfg=dict(
custom_keys={
'ln': dict(decay_mult=0.0),
'bias': dict(decay_mult=0.0),
'pos_embed': dict(decay_mult=0.),
'mask_token': dict(decay_mult=0.),
'cls_token': dict(decay_mult=0.)
}))
# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=40,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=360,
by_epoch=True,
begin=40,
end=400,
convert_to_iter_based=True)
]
# runtime settings
# pre-train for 400 epochs
train_cfg = dict(max_epochs=400)
default_hooks = dict(
logger=dict(type='LoggerHook', interval=100),
# only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))
# randomness
randomness = dict(seed=0, diff_rank_seed=True)
resume = True
Train SimCLR on Custom Dataset
We provide an example of using SimCLR on custom dataset, the main idea is similar to the Train MAE on Custom Dataset .
The template config is configs/selfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k.py
. And the edited config is:
# >>>>>>>>>>>>>>>>>>>>> Start of Changed >>>>>>>>>>>>>>>>>>>>>>>>>
_base_ = [
'../_base_/models/simclr.py',
# '../_base_/datasets/imagenet_simclr.py',
'../_base_/schedules/lars_coslr-200e_in1k.py',
'../_base_/default_runtime.py',
]
# custom dataset
dataset_type = 'mmcls.CustomDataset'
data_root = 'data/custom_dataset/'
view_pipeline = [
dict(type='RandomResizedCrop', size=224, backend='pillow'),
dict(type='RandomFlip', prob=0.5),
dict(
type='RandomApply',
transforms=[
dict(
type='ColorJitter',
brightness=0.8,
contrast=0.8,
saturation=0.8,
hue=0.2)
],
prob=0.8),
dict(
type='RandomGrayscale',
prob=0.2,
keep_channels=True,
channel_weights=(0.114, 0.587, 0.2989)),
dict(type='RandomGaussianBlur', sigma_min=0.1, sigma_max=2.0, prob=0.5),
]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='MultiView', num_views=2, transforms=[view_pipeline]),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])
]
train_dataloader = dict(
batch_size=32,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(
type=dataset_type,
data_root=data_root,
# ann_file='meta/train.txt',
data_prefix=dict(img_path='./'),
pipeline=train_pipeline))
# <<<<<<<<<<<<<<<<<<<<<< End of Changed <<<<<<<<<<<<<<<<<<<<<<<<<<<
# optimizer
optimizer = dict(type='LARS', lr=0.3, momentum=0.9, weight_decay=1e-6)
optim_wrapper = dict(
type='OptimWrapper',
optimizer=optimizer,
paramwise_cfg=dict(
custom_keys={
'bn': dict(decay_mult=0, lars_exclude=True),
'bias': dict(decay_mult=0, lars_exclude=True),
# bn layer in ResNet block downsample module
'downsample.1': dict(decay_mult=0, lars_exclude=True),
}))
# runtime settings
default_hooks = dict(
# only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=3))
Load pre-trained model to speedup convergence
To speedup the convergence of the model on your own dataset. You may use the pre-trained model as the initialization for the model's weight. You just need to specify the url of the pre-trained model via command. You can find our provide pre-trained checkpoint here: Model Zoo
bash tools/dist_train.sh ${CONFIG} ${GPUS} --cfg-options model.pretrained=${PRETRAIN}
CONFIG
: the edited config pathGPUS
: the number of GPUPRETRAIN
: the checkpoint url of pre-trained model provided by MMSelfSup