mmselfsup/tests/test_data/test_datasets/test_singleview_dataset.py
2021-12-15 19:07:01 +08:00

42 lines
1.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import numpy as np
import pytest
from mmselfsup.datasets import SingleViewDataset
# dataset settings
data_source = 'ImageNet'
dataset_type = 'MultiViewDataset'
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_pipeline = [dict(type='RandomResizedCrop', size=4)]
# prefetch
prefetch = False
if not prefetch:
train_pipeline.extend(
[dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg)])
def test_one_view_dataset():
data = dict(
data_source=dict(
type=data_source,
data_prefix=osp.join(osp.dirname(__file__), '../../data'),
ann_file=osp.join(
osp.dirname(__file__), '../../data/data_list.txt'),
),
pipeline=train_pipeline,
prefetch=prefetch)
dataset = SingleViewDataset(**data)
fake_results = {'test': np.array([[0.7, 0, 0.3], [0.5, 0.3, 0.2]])}
with pytest.raises(AssertionError):
eval_res = dataset.evaluate({'test': np.array([[0.7, 0, 0.3]])},
topk=(1))
eval_res = dataset.evaluate(fake_results, topk=(1, 2))
assert eval_res['test_top1'] == 1 * 100.0 / 2
assert eval_res['test_top2'] == 2 * 100.0 / 2