mirror of
https://github.com/open-mmlab/mmselfsup.git
synced 2025-06-03 14:59:38 +08:00
72 lines
1.9 KiB
Python
72 lines
1.9 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
from unittest.mock import MagicMock
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.utils.data import Dataset
|
|
|
|
from mmselfsup.models.utils import Extractor
|
|
|
|
|
|
class ExampleDataset(Dataset):
|
|
|
|
def __getitem__(self, idx):
|
|
results = dict(img=torch.tensor([1]), img_metas=dict())
|
|
return results
|
|
|
|
def __len__(self):
|
|
return 1
|
|
|
|
|
|
class ExampleModel(nn.Module):
|
|
|
|
def __init__(self):
|
|
super(ExampleModel, self).__init__()
|
|
self.test_cfg = None
|
|
self.conv = nn.Conv2d(3, 3, 3)
|
|
self.neck = nn.Identity()
|
|
|
|
def forward(self, img, test_mode=False, **kwargs):
|
|
return img
|
|
|
|
def train_step(self, data_batch, optimizer):
|
|
loss = self.forward(**data_batch)
|
|
return dict(loss=loss)
|
|
|
|
|
|
def test_extractor():
|
|
test_dataset = ExampleDataset()
|
|
test_dataset.evaluate = MagicMock(return_value=dict(test='success'))
|
|
|
|
extract_dataloader = dict(
|
|
batch_size=1,
|
|
num_workers=1,
|
|
sampler=dict(type='DefaultSampler', shuffle=False),
|
|
dataset=test_dataset)
|
|
|
|
# test init
|
|
extractor = Extractor(
|
|
extract_dataloader=extract_dataloader, dist_mode=False, pool_cfg=None)
|
|
assert getattr(extractor, 'pool', None) is None
|
|
|
|
# test init
|
|
extractor = Extractor(
|
|
extract_dataloader=extract_dataloader, dist_mode=False)
|
|
|
|
# TODO: test runtime
|
|
# As the BaseModel is not defined finally, I will add it later.
|
|
|
|
# # test extractor
|
|
# with tempfile.TemporaryDirectory() as tmpdir:
|
|
# model = MMDataParallel(ExampleModel())
|
|
# optimizer = build_optimizer(model, optim_cfg)
|
|
# runner = build_runner(
|
|
# runner_cfg,
|
|
# default_args=dict(
|
|
# model=model,
|
|
# optimizer=optimizer,
|
|
# work_dir=tmpdir,
|
|
# logger=logging.getLogger()))
|
|
# features = extractor(runner)
|
|
# assert features.shape == (1, 1)
|