20 KiB
20 KiB
Model Zoo
Pre-trained model download links
Method | Config | Remarks | Download link |
---|---|---|---|
ImageNet | - | torchvision | imagenet_r50-21352794.pth |
Random | - | kaiming | random_r50-5d0fa71b.pth |
Relative-Loc | selfsup/relative_loc/r50.py | default | |
Rotation-Pred | selfsup/rotation_pred/r50.py | default | rotation_r50-cfab8ebb.pth |
DeepCluster | selfsup/deepcluster/r50.py | default | deepcluster_r50-bb8681e2.pth |
NPID | selfsup/npid/r50.py | default | npid_r50-dec3df0c.pth |
selfsup/npid/r50_ensure_neg.py | default | npid_r50_ensure_neg-ce09b7ae.pth | |
ODC | selfsup/odc/r50_v1.py | default | odc_r50_v1-5af5dd0c.pth |
MoCo | selfsup/moco/r50_v1.py | default | moco_r50_v1-4ad89b5c.pth |
MoCo v2 | selfsup/moco/r50_v2.py | default | moco_r50_v2-58f10cfe.pth |
selfsup/moco/r50_v2_simclr_neck.py | -> SimCLR neck |
moco_r50_v2_simclr_neck-70379356.pth | |
SimCLR | selfsup/simclr/r50_bs256_ep200.py | default | simclr_r50_bs256_ep200-4577e9a6.pth |
selfsup/simclr/r50_bs256_ep200_mocov2_neck.py | -> MoCo v2 neck | simclr_r50_bs256_ep200_mocov2_neck-0d6e5ff2.pth | |
BYOL | selfsup/byol/r50.py | default |
Benchmarks
VOC07 SVM & SVM Low-shot
Method | Config | Remarks | Best layer | VOC07 SVM | VOC07 SVM Low-shot | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 4 | 8 | 16 | 32 | 64 | 96 | |||||
ImageNet | - | torchvision | feat5 | 87.17 | 52.99 | 63.55 | 73.7 | 78.79 | 81.76 | 83.75 | 85.18 | 85.97 |
Random | - | kaiming | feat2 | 30.22 | ||||||||
Relative-Loc | feat5 | |||||||||||
Rotation-Pred | selfsup/rotation_pred/r50.py | default | feat4 | 67.38 | ||||||||
DeepCluster | selfsup/deepcluster/r50.py | default | feat5 | 74.26 | ||||||||
NPID | selfsup/npid/r50.py | default | feat5 | 74.50 | ||||||||
selfsup/npid/r50_ensure_neg.py | ensure_neg=True | feat5 | 75.70 | |||||||||
ODC | selfsup/odc/r50_v1.py | default | feat5 | 78.42 | ||||||||
MoCo | selfsup/moco/r50_v1.py | default | feat5 | 79.18 | ||||||||
MoCo v2 | selfsup/moco/r50_v2.py | default | feat5 | 84.05 | ||||||||
selfsup/moco/r50_v2_simclr_neck.py | -> SimCLR neck | feat5 | 84.00 | |||||||||
SimCLR | selfsup/simclr/r50_bs256_ep200.py | default | feat5 | 78.95 | ||||||||
selfsup/simclr/r50_bs256_ep200_mocov2_neck.py | -> MoCo v2 neck | feat5 | 77.65 | |||||||||
BYOL | selfsup/byol/r50.py | default |
ImageNet Linear Classification
Note
- Config:
configs/benchmarks/linear_classification/imagenet/r50_multihead.py
for ImageNet (Multi) andconfigs/benchmarks/linear_classification/imagenet/r50_moco.py
for ImageNet (Last). - For DeepCluster, use the corresponding one with
_sobel
. - ImageNet (Multi) evaluates features in around 9k dimensions from different layers. Top-1 result of the last epoch is reported.
- ImageNet (Last) evaluates the last feature after global average pooling, e.g., 2048 dimensions for resnet50. The best top-1 result among all epochs is reported.
Method | Config | Remarks | ImageNet (Multi) | ImageNet (Last) | ||||
---|---|---|---|---|---|---|---|---|
feat1 | feat2 | feat3 | feat4 | feat5 | avgpool | |||
ImageNet | - | torchvision | 15.18 | 33.96 | 47.86 | 67.56 | 76.17 | 74.12 |
Random | - | kaiming | 11.37 | 16.21 | 13.47 | 9.07 | 6.54 | 4.35 |
Relative-Loc | selfsup/relative_loc/r50.py | default | ||||||
Rotation-Pred | selfsup/rotation_pred/r50.py | default | 12.89 | 34.30 | 44.91 | 54.99 | 49.09 | 47.01 |
DeepCluster | selfsup/deepcluster/r50.py | default | 12.78 | 30.81 | 43.88 | 57.71 | 51.68 | 46.92 |
NPID | selfsup/npid/r50.py | default | 14.28 | 31.20 | 40.68 | 54.46 | 56.61 | 56.60 |
ODC | selfsup/odc/r50_v1.py | default | 14.76 | 31.82 | 42.44 | 55.76 | 57.70 | 53.42 |
MoCo | selfsup/moco/r50_v1.py | default | 15.32 | 33.08 | 44.68 | 57.27 | 60.60 | 61.02 |
MoCo v2 | selfsup/moco/r50_v2.py | default | 15.35 | 34.57 | 45.81 | 60.96 | 66.72 | 67.02 |
selfsup/moco/r50_v2_simclr_neck.py | -> SimCLR neck | 15.19 | 32.54 | 43.12 | 60.36 | 67.08 | 65.39 | |
SimCLR | selfsup/simclr/r50_bs256_ep200.py | default | 17.09 | 31.37 | 41.38 | 54.35 | 61.57 | 60.06 |
selfsup/simclr/r50_bs256_ep200_mocov2_neck.py | -> MoCo v2 neck | 16.97 | 31.88 | 41.73 | 54.33 | 59.94 | 58.00 | |
BYOL | selfsup/byol/r50.py | default |
Places205 Linear Classification
Coming soon.
ImageNet Semi-Supervised Classification
Note
- In this benchmark, the necks or heads are removed and only the backbone CNN is evaluated by appending a linear classification head. All parameters are fine-tuned.
- Config: under
configs/benchmarks/semi_classification/imagenet_1percent/
for 1% data, andconfigs/benchmarks/semi_classification/imagenet_10percent/
for 10% data. - When training with 1% ImageNet, we find hyper-parameters especially the learning rate greatly influence the performance. Hence, we prepare a list of settings with the base learning rate from {0.001, 0.01, 0.1} and the learning rate multiplier for the head from {1, 10, 100}. We choose the best performing setting for each method.
- Please use
--deterministic
in this benchmark.
Method | Config | Remarks | Optimal setting for ImageNet 1% | ImageNet 1% | |
---|---|---|---|---|---|
top-1 | top-5 | ||||
ImageNet | - | torchvision | r50_lr0_001_head100.py | 68.68 | 88.87 |
Random | - | kaiming | r50_lr0_01_head1.py | 1.56 | 4.99 |
Relative-Loc | selfsup/relative_loc/r50.py | default | |||
Rotation-Pred | selfsup/rotation_pred/r50.py | default | r50_lr0_01_head100.py | 18.98 | 44.05 |
DeepCluster | selfsup/deepcluster/r50.py | default | r50_lr0_01_head1_sobel.py | 33.44 | 58.62 |
NPID | selfsup/npid/r50.py | default | r50_lr0_01_head100.py | 27.95 | 54.37 |
ODC | selfsup/odc/r50_v1.py | default | r50_lr0_1_head100.py | 32.39 | 61.02 |
MoCo | selfsup/moco/r50_v1.py | default | r50_lr0_01_head100.py | 33.15 | 61.30 |
MoCo v2 | selfsup/moco/r50_v2.py | default | r50_lr0_01_head100.py | 38.71 | 67.90 |
selfsup/moco/r50_v2_simclr_neck.py | -> SimCLR neck | r50_lr0_01_head100.py | 31.37 | 59.65 | |
SimCLR | selfsup/simclr/r50_bs256_ep200.py | default | r50_lr0_01_head100.py | 36.09 | 64.50 |
selfsup/simclr/r50_bs256_ep200_mocov2_neck.py | -> MoCo v2 neck | r50_lr0_01_head100.py | 36.31 | 64.68 | |
BYOL | selfsup/byol/r50.py | default |
Method | Config | Remarks | Optimal setting for ImageNet 10% | ImageNet 10% | |
---|---|---|---|---|---|
top-1 | top-5 | ||||
ImageNet | - | torchvision | r50_lr0_001_head10.py | 74.53 | 92.19 |
Random | - | kaiming | r50_lr0_01_head1.py | 21.78 | 44.24 |
Relative-Loc | selfsup/relative_loc/r50.py | default | |||
Rotation-Pred | selfsup/rotation_pred/r50.py | default | r50_lr0_01_head100.py | 54.75 | 80.21 |
DeepCluster | selfsup/deepcluster/r50.py | default | r50_lr0_01_head1_sobel.py | 52.94 | 77.96 |
NPID | selfsup/npid/r50.py | default | r50_lr0_01_head100.py | 57.22 | 81.39 |
ODC | selfsup/odc/r50_v1.py | default | r50_lr0_1_head10.py | 58.15 | 82.55 |
MoCo | selfsup/moco/r50_v1.py | default | r50_lr0_01_head100.py | 60.08 | 84.02 |
MoCo v2 | selfsup/moco/r50_v2.py | default | r50_lr0_01_head100.py | 61.64 | 84.90 |
selfsup/moco/r50_v2_simclr_neck.py | -> SimCLR neck | 60.60 | 84.29 | ||
SimCLR | selfsup/simclr/r50_bs256_ep200.py | default | r50_lr0_01_head100.py | 58.46 | 82.60 |
selfsup/simclr/r50_bs256_ep200_mocov2_neck.py | -> MoCo v2 neck | 58.38 | 82.53 | ||
BYOL | selfsup/byol/r50.py | default |
PASCAL VOC07+12 Object Detection
Coming soon.