* [Enhance] add pre-commit hook for algo-readme and copyright (#213) * [Enhance] add test windows in workflows (#215) * [Enhance] add test windows in workflows * fix lint * add optional requirements * add try-except judgement * add opencv installation in windows test steps * fix path error on windows * update * update path * update * add pytest skip for algorithm test * update requirements/runtime.txt * update pytest skip * [Docs] translate 0_config.md into Chinese (#216) * [Docs] translate 0_config.md into Chinese * [Fix] fix format description in 0_config.md * Update: 0_config.md * [Fix] fix tsne 'no `init_cfg`' error (#222) * [Fix] fix tsne 'no init_cfg' and pool_type errors * [Refactor] fix linting of tsne vis * [Docs] reorganizing OpenMMLab projects and update algorithms in readme (#219) * [Docs] reorganizing OpenMMLab projects and update algorithms in readme * using small letters * fix typo * [Fix] fix image channel bgr/rgb bug and update benchmarks (#210) * [Fix] fix image channel bgr/rgb bug * update model zoo * update readme and metafile * [Fix] fix typo * [Fix] fix typo * [Fix] fix lint * modify Places205 directory according to the downloaded dataset * update results * [Fix] Fix the bug when using prefetch under multi-view methods, e.g., DenseCL (#218) * fig bug for prefetch_loader under multi-view setting * fix lint problem Co-authored-by: liming <liming.ai@bytedance.com> * [Feature]: MAE official (#221) * [Feature]: MAE single image pre-training * [Fix]: Fix config * [Fix]: Fix dataset link * [Feature]: Add run * [Refactor]: Delete spot * [Feature]: ignore nohup output file * [Feature]: Add auto script to generate run cmd * [Refactor]: Refactor mae config file * [Feature]: sz20 settings * [Feature]: Add auto resume * [Fix]: Fix lint * [Feature]: Make git ignore txt * [Refactor]: Delete gpus in script * [Fix]: Make generate_cmd to add --async * [Feature]: Initial version of Vit fine-tune * [Fix]: Add 1424 specific settings * [Fix]: Fix missing file client bug for 1424 * [Feature]: 1424 customized settings * [Fix]: Make drop in eval to False * [Feature]: Change the finetune and pre-training settings * [Feature]: Add debug setting * [Refactor]: Refactor the model * [Feature]: Customized settings * [Feature]: Add A100 settings * [Fix]: Change mae to imagenet * [Feature]: Change mae pretrain num workers to 32 * [Feature]: Change num workers to 16 * [Feature]: Add A100 setting for pre_release ft version * [Feature]: Add img_norm_cfg * [Fix]: Fix mae cls test missing logits bug * [Fix]: Fix mae cls head bias initialize to zero * [Feature]: Rename mae config name * [Feature]: Add MAE README.md * [Fix]: Fix lint * [Feature]: Fix typo * [Fix]: Fix typo * [Feature]: Fix invalid link * [Fix]: Fix finetune config file name * [Feature]: Official pretrain v1 * [Feature]: Change log interval to 100 * [Feature]: pretrain 1600 epochs * [Fix]: Change encoder num head to 12 * [Feature]: Mix precision * [Feature]: Add default value to random masking * [Feature]: Official MAE finetune * [Feature]: Finetune img per gpu 32 * [Feature]: Add multi machine training for lincls * [Fix]: Fix lincls master port master addr * [Feature]: Change img per gpu to 128 * [Feature]: Add linear eval and Refactor * [Fix]: Fix debug mode * [Fix]: Delete MAE dataset in __init__.py * [Feature]: normalize pixel for mae * [Fix]: Fix lint * [Feature]: LARS for linear eval * [Feature]: Add lars for mae linear eval * [Feature]: Change mae linear lars num workers to 32 * [Feature]: Change mae linear lars num workers to 8 * [Feature]: log every 25 iter for mae linear eval lars * [Feature]: Add 1600 epoch and 800 epoch pretraining * [Fix]: Change linear eval to 902 * [Fix]: Add random flip to linear eval * [Fix]: delete fp16 in mae * [Refactor]: Change backbone to mmcls * [Fix]: Align finetune settings * [Fix]: replace timm trunc_normal with mmcv trunc_normal * [Fix]: Change finetune layer_decay to 0.65 * [Fix]: Delete pretrain last norm when global_pooling * [Fix]: set requires_grad of norm1 to False * [Fix]: delete norm1 * [Fix]: Fix docstring bug * [Fix]: Fix lint * [Fix]: Add external link * [Fix]: Delete auto_resume and reformat config readme. * [Fix]: Fix pytest bug * [Fix]: Fix lint * [Refactor]: Rename filename * [Feature]: Add docstring * [Fix]: Rename config file name * [Fix]: Fix name inconsistency bug * [Fix]: Change the default value of persistent_worker in builder to True * [Fix]: Change the default value of CPUS_PER_TASK to 5 * [Fix]: Add a blank line to line136 in tools/train.py * [Fix]: Fix MAE algorithm docstring format and add paper name and url * [Feature]: Add MAE paper name and link, and store mae teaser on github * [Refactor]: Delete mae.png * [Fix]: Fix config file name” * [Fix]: Fix name bug * [Refactor]: Change default GPUS to 8 * [Fix]: Abandon change to drop_last * [Fix]: Fix docstring in mae algorithm * [Fix]: Fix lint * [Fix]: Fix lint * [Fix]: Fix mae finetune algo type bug * [Feature]: Add unit test for algorithm * [Feature]: Add unit test for remaining parts * [Fix]: Fix lint * [Fix]: Fix typo * [Fix]: Delete some unnecessary modification in gitignore * [Feature]: Change finetune setting in mae algo to mixup setting * [Fix]: Change norm_pix_loss to norm_pix in pretrain head * [Fix]: Delete modification in dist_train_linear.sh * [Refactor]: Delete global pool in mae_cls_vit.py * [Fix]: Change finetune param to mixup in test_mae_classification * [Fix]: Change norm_pix_loss to norm_pix of mae_pretrain_head in unit test * [Fix]: Change norm_pix_loss to norm_pix in unit test * [Refactor]: Create init_weights for mae_finetune_head and mae_linprobe_head * [Refactor]: Construct 2d sin-cosine position embedding using torch * [Refactor]: Using classification and using mixup from mmcls * [Fix]: Fix lint * [Fix]: Add False to finetune mae linprobe‘ “ * [Fix]: Set drop_last to False * [Fix]: Fix MAE finetune layerwise lr bug * [Refactor]: Delete redundant MAE when registering MAE * [Refactor]: Split initialize_weights in MAE to submodules * [Fix]: Change the min_lr of mae pretrain to 0.0 * [Refactor]: Delete unused _init_weights in mae_cls_vit * [Refactor]: Change MAE cls vit to a more general name * [Feature]: Add Epoch Fix cosine annealing lr updater * [Fix]: Fix lint * [Feature]: Add layer wise lr decay in optimizer constructor * [Fix]: Fix lint * [Fix]: Fix set layer wise lr decay bug * [Fix]: Fix UT for MAE * [Fix]: Fix lint * [Fix]: update algorithm readme format for MAE * [Fix]: Fix isort * [Fix]: Add Returns inmae_pretrain_vit * [Fix]: Change bgr to rgb * [Fix]: Change norm pix to True * [Fix]: Use cls_token to linear prob * [Fix]: Delete mixup.py * [Fix]: Fix MAE readme * [Feature]: Delete linprobe * [Refactor]: Merge MAE head into one file * [Fix]: Fix lint * [Fix]: rename mae_pretrain_head to mae_head * [Fix]: Fix import error in __init__.py * [Feature]: skip MAE algo UT when running on windows * [Fix]: Fix UT bug * [Feature]: Update model_zoo * [Fix]: Rename MAE pretrain model name * [Fix]: Delete mae ft prefix * [Feature]: Change b to base * [Refactor]: Change b in MAE pt config to base * [Fix]: Fix typo in docstring * [Fix]: Fix name bug * [Feature]: Add new constructor for MAE finetune * [Fix]: Fix model_zoo link * [Fix]: Skip UT for MAE * [Fix]: Change fixed channel order to param Co-authored-by: LIU Yuan <liuyuuan@pjlab.org.cn> Co-authored-by: liu yuan <liuyuan@pjlab.org.cn> * [Feature]: Add diff seeds to diff ranks and set torch seed in worker_init_fn (#228) * [Feature]: Add set diff seeds to diff ranks * [Fix]: Set diff seed to diff workers * Bump version to v0.7.0 (#227) * Bump version to v0.7.0 * [Docs] update readme Co-authored-by: wang11wang <95845452+wang11wang@users.noreply.github.com> Co-authored-by: Liangyu Chen <45140242+c-liangyu@users.noreply.github.com> Co-authored-by: Ming Li <73068772+mitming@users.noreply.github.com> Co-authored-by: liming <liming.ai@bytedance.com> Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com> Co-authored-by: LIU Yuan <liuyuuan@pjlab.org.cn> Co-authored-by: liu yuan <liuyuan@pjlab.org.cn>
11 KiB
介绍
English | 简体中文
MMSelfSup 是一个基于 PyTorch 实现的开源自监督表征学习工具箱,是 OpenMMLab 项目成员之一。
主分支代码支持 PyTorch 1.5 及以上的版本。
主要特性
-
多方法集成
MMSelfSup 提供了多种前沿的自监督学习算法,大部分的自监督预训练学习都设置相同,以在基准中获得更加公平的比较。
-
模块化设计
MMSelfSup 遵照 OpenMMLab 项目一贯的设计理念,进行模块化设计,便于用户自定义实现自己的算法。
-
标准化的性能评测
MMSelfSup 拥有丰富的基准进行评估和测试,包括线性评估, 线性特征的 SVM / Low-shot SVM, 半监督分类, 目标检测和语义分割。
-
兼容性
兼容 OpenMMLab 各大算法库,拥有丰富的下游评测任务和预训练模型的应用。
开源许可证
该项目采用 Apache 2.0 开源许可证.
更新日志
最新的 v0.7.0 版本已经在 2022.03.03 发布。
新版本亮点:
- 支持 MAE
- 增加 Places205 下游基准测试
- 增加 Windows 测试
请参考 更新日志 获取更多细节和历史版本信息。
MMSelfSup 和 OpenSelfSup 的不同点写在 对比文档 中。
模型库和基准测试
模型库
请参考 模型库 查看我们更加全面的模型基准结果。
目前已支持的算法:
- Relative Location (ICCV'2015)
- Rotation Prediction (ICLR'2018)
- DeepCLuster (ECCV'2018)
- NPID (CVPR'2018)
- ODC (CVPR'2020)
- MoCo v1 (CVPR'2020)
- SimCLR (ICML'2020)
- MoCo v2 (ArXiv'2020)
- BYOL (NeurIPS'2020)
- SwAV (NeurIPS'2020)
- DenseCL (CVPR'2021)
- SimSiam (CVPR'2021)
- MoCo v3 (ICCV'2021)
- MAE
更多的算法实现已经在我们的计划中。
基准测试
基准测试方法 | 参考设置 |
---|---|
ImageNet Linear Classification (Multi-head) | Goyal2019 |
ImageNet Linear Classification (Last) | |
ImageNet Semi-Sup Classification | |
Places205 Linear Classification (Multi-head) | Goyal2019 |
iNaturalist2018 Linear Classification (Multi-head) | Goyal2019 |
PASCAL VOC07 SVM | Goyal2019 |
PASCAL VOC07 Low-shot SVM | Goyal2019 |
PASCAL VOC07+12 Object Detection | MoCo |
COCO17 Object Detection | MoCo |
Cityscapes Segmentation | MMSeg |
PASCAL VOC12 Aug Segmentation | MMSeg |
安装
快速入门
请参考 入门指南 获取 MMSelfSup 的基本使用方法.
我们也提供了更加全面的教程,包括:
参与贡献
我们非常欢迎任何有助于提升 MMSelfSup 的贡献,请参考 贡献指南 来了解如何参与贡献。
致谢
MMSelfSup 是一款由不同学校和公司共同贡献的开源项目,我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户;同时,我们非常感谢 OpenSelfSup 的原开发者和贡献者。
我们希望该工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现现有算法并开发自己的新模型,从而不断为开源社区提供贡献。
引用
如果您发现此项目对您的研究有用,请考虑引用:
@misc{mmselfsup2021,
title={{MMSelfSup}: OpenMMLab Self-Supervised Learning Toolbox and Benchmark},
author={MMSelfSup Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmselfsup}},
year={2021}
}
OpenMMLab 的其他项目
- MMCV: OpenMMLab 计算机视觉基础库
- MIM: MIM 是 OpenMMlab 项目、算法、模型的统一入口
- MMClassification: OpenMMLab 图像分类工具箱
- MMDetection: OpenMMLab 目标检测工具箱
- MMDetection3D: OpenMMLab 新一代通用 3D 目标检测平台
- MMRotate: OpenMMLab 旋转框检测工具箱与测试基准
- MMSegmentation: OpenMMLab 语义分割工具箱
- MMOCR: OpenMMLab 全流程文字检测识别理解工具箱
- MMPose: OpenMMLab 姿态估计工具箱
- MMHuman3D: OpenMMLab 人体参数化模型工具箱与测试基准
- MMSelfSup: OpenMMLab 自监督学习工具箱与测试基准
- MMRazor: OpenMMLab 模型压缩工具箱与测试基准
- MMFewShot: OpenMMLab 少样本学习工具箱与测试基准
- MMAction2: OpenMMLab 新一代视频理解工具箱
- MMTracking: OpenMMLab 一体化视频目标感知平台
- MMFlow: OpenMMLab 光流估计工具箱与测试基准
- MMEditing: OpenMMLab 图像视频编辑工具箱
- MMGeneration: OpenMMLab 图片视频生成模型工具箱
- MMDeploy: OpenMMLab 模型部署框架
欢迎加入 OpenMMLab 社区
扫描下方的二维码可关注 OpenMMLab 团队的 知乎官方账号,加入 OpenMMLab 团队的 官方交流 QQ 群,添加OpenMMLab 官方小助手微信,加入 MMSelfSup 微信社区。
我们会在 OpenMMLab 社区为大家
- 📢 分享 AI 框架的前沿核心技术
- 💻 解读 PyTorch 常用模块源码
- 📰 发布 OpenMMLab 的相关新闻
- 🚀 介绍 OpenMMLab 开发的前沿算法
- 🏃 获取更高效的问题答疑和意见反馈
- 🔥 提供与各行各业开发者充分交流的平台
干货满满 📘,等你来撩 💗,OpenMMLab 社区期待您的加入 👬