2022-07-18 11:06:44 +08:00

100 lines
2.6 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import platform
import pytest
import torch
from mmselfsup.models.algorithms import CAE
from mmengine.data import InstanceData
from mmselfsup.core.data_structures.selfsup_data_sample import \
SelfSupDataSample
from mmselfsup.models.algorithms.cae import CAE
# model settings
backbone = dict(type='CAEViT', arch='b', patch_size=16, init_values=0.1)
neck = dict(
type='CAENeck',
patch_size=16,
embed_dims=768,
num_heads=12,
regressor_depth=4,
decoder_depth=4,
mlp_ratio=4,
init_values=0.1,
)
head = dict(type='CAEHead', tokenizer_path='cae_ckpt/encoder_stat_dict.pth')
loss = dict(type='CAELoss', lambd=2)
preprocess_cfg = {
'mean': [0.5, 0.5, 0.5],
'std': [0.5, 0.5, 0.5],
'to_rgb': True
}
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_cae():
with pytest.raises(AssertionError):
model = CAE(
backbone=None,
neck=neck,
head=head,
loss=loss,
preprocess_cfg=copy.deepcopy(preprocess_cfg))
with pytest.raises(AssertionError):
model = CAE(
backbone=backbone,
neck=None,
head=head,
loss=loss,
preprocess_cfg=copy.deepcopy(preprocess_cfg))
with pytest.raises(AssertionError):
model = CAE(
backbone=backbone,
neck=neck,
head=None,
loss=loss,
preprocess_cfg=copy.deepcopy(preprocess_cfg))
with pytest.raises(AssertionError):
model = CAE(
backbone=backbone,
neck=neck,
head=head,
loss=None,
preprocess_cfg=copy.deepcopy(preprocess_cfg))
model = CAE(
backbone=backbone,
neck=neck,
head=head,
loss=loss,
preprocess_cfg=copy.deepcopy(preprocess_cfg))
# model.init_weights()
fake_img = torch.rand((3, 224, 224))
fake_target_img = torch.rand((3, 112, 112))
fake_mask = torch.zeros((196)).bool()
fake_mask[75:150] = 1
fake_data_sample = SelfSupDataSample()
fake_mask = InstanceData(value=fake_mask)
fake_data_sample.mask = fake_mask
fake_data = [{
'inputs': [fake_img, fake_target_img],
'data_sample': fake_data_sample
}]
fake_loss = model(fake_data, return_loss=True)
# test forward_train
assert isinstance(fake_loss['loss'].item(), float)
# test extract_feat
fake_inputs, fake_data_samples = model.preprocss_data(fake_data)
fake_feat = model.extract_feat(fake_inputs, fake_data_samples)
assert list(fake_feat.shape) == [1, 122, 768]