mmselfsup/openselfsup/models/utils/multi_pooling.py

39 lines
1.3 KiB
Python

import torch.nn as nn
class MultiPooling(nn.Module):
"""Pooling layers for features from multiple depth."""
POOL_PARAMS = {
'resnet50': [
dict(kernel_size=10, stride=10, padding=4),
dict(kernel_size=16, stride=8, padding=0),
dict(kernel_size=13, stride=5, padding=0),
dict(kernel_size=8, stride=3, padding=0),
dict(kernel_size=6, stride=1, padding=0)
]
}
POOL_SIZES = {'resnet50': [12, 6, 4, 3, 2]}
POOL_DIMS = {'resnet50': [9216, 9216, 8192, 9216, 8192]}
def __init__(self,
pool_type='adaptive',
in_indices=(0, ),
backbone='resnet50'):
super(MultiPooling, self).__init__()
assert pool_type in ['adaptive', 'specified']
if pool_type == 'adaptive':
self.pools = nn.ModuleList([
nn.AdaptiveAvgPool2d(self.POOL_SIZES[backbone][l])
for l in in_indices
])
else:
self.pools = nn.ModuleList([
nn.AvgPool2d(**self.POOL_PARAMS[backbone][l])
for l in in_indices
])
def forward(self, x):
assert isinstance(x, (list, tuple))
return [p(xx) for p, xx in zip(self.pools, x)]