mmselfsup/openselfsup/models/utils/norm.py

56 lines
1.6 KiB
Python

import torch.nn as nn
norm_cfg = {
# format: layer_type: (abbreviation, module)
'BN': ('bn', nn.BatchNorm2d),
'SyncBN': ('bn', nn.SyncBatchNorm),
'GN': ('gn', nn.GroupNorm),
# and potentially 'SN'
}
def build_norm_layer(cfg, num_features, postfix=''):
"""Build normalization layer.
Args:
cfg (dict): cfg should contain:
type (str): identify norm layer type.
layer args: args needed to instantiate a norm layer.
requires_grad (bool): [optional] whether stop gradient updates
num_features (int): number of channels from input.
postfix (int, str): appended into norm abbreviation to
create named layer.
Returns:
name (str): abbreviation + postfix
layer (nn.Module): created norm layer
"""
assert isinstance(cfg, dict) and 'type' in cfg
cfg_ = cfg.copy()
layer_type = cfg_.pop('type')
if layer_type not in norm_cfg:
raise KeyError('Unrecognized norm type {}'.format(layer_type))
else:
abbr, norm_layer = norm_cfg[layer_type]
if norm_layer is None:
raise NotImplementedError
assert isinstance(postfix, (int, str))
name = abbr + str(postfix)
requires_grad = cfg_.pop('requires_grad', True)
cfg_.setdefault('eps', 1e-5)
if layer_type != 'GN':
layer = norm_layer(num_features, **cfg_)
if layer_type == 'SyncBN':
layer._specify_ddp_gpu_num(1)
else:
assert 'num_groups' in cfg_
layer = norm_layer(num_channels=num_features, **cfg_)
for param in layer.parameters():
param.requires_grad = requires_grad
return name, layer