mmselfsup/tools/benchmarks/classification/dist_train_linear.sh

31 lines
1008 B
Bash

#!/usr/bin/env bash
set -e
set -x
CFG=$1 # use cfgs under "configs/benchmarks/classification/imagenet/*.py"
PRETRAIN=$2 # pretrained model
PY_ARGS=${@:3}
GPUS=${GPUS:-8} # When changing GPUS, please also change samples_per_gpu in the config file accordingly to ensure the total batch size is 256.
NNODES=${NNODES:-1}
NODE_RANK=${NODE_RANK:-0}
PORT=${PORT:-29500}
MASTER_ADDR=${MASTER_ADDR:-"127.0.0.1"}
# set work_dir according to config path and pretrained model to distinguish different models
WORK_DIR="$(echo ${CFG%.*} | sed -e "s/configs/work_dirs/g")/$(echo $PRETRAIN | rev | cut -d/ -f 1 | rev)"
python -m torch.distributed.launch \
--nnodes=$NNODES \
--node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR \
--nproc_per_node=$GPUS \
--master_port=$PORT \
tools/train.py $CFG \
--cfg-options model.backbone.init_cfg.type=Pretrained \
model.backbone.init_cfg.checkpoint=$PRETRAIN \
--work-dir $WORK_DIR \
--seed 0 \
--launcher="pytorch" \
${PY_ARGS}