mmselfsup/configs/selfsup/cae/metafile.yml

36 lines
1.3 KiB
YAML

Collections:
- Name: CAE
Metadata:
Training Data: ImageNet-1k
Training Techniques:
- AdamW
Training Resources: 16x A100-80G GPUs
Architecture:
- ViT
Paper:
URL: https://arxiv.org/abs/2202.03026
Title: "Context Autoencoder for Self-Supervised Representation Learning"
README: configs/selfsup/cae/README.md
Models:
- Name: cae_vit-base-p16_8xb256-fp16-coslr-300e_in1k
In Collection: CAE
Metadata:
Epochs: 300
Batch Size: 2048
Results: null
Config: configs/selfsup/cae/cae_vit-base-p16_16xb128-amp-coslr-300e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/cae/cae_vit-base-p16_16xb128-fp16-coslr-300e_in1k/cae_vit-base-p16_16xb128-fp16-coslr-300e_in1k_20220825-404a1929.pth
Downstream:
- Type: Image Classification
Metadata:
Epochs: 100
Batch Size: 1024
Results:
- Task: Fine-tuning
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 60.8
Config: configs/benchmarks/classification/imagenet/vit-base-p16_ft-8xb128-coslr-100e-rpe_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/cae/cae_vit-base-p16_16xb128-fp16-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e-rpe_in1k/vit-base-p16_ft-8xb128-coslr-100e-rpe_in1k_20220825-f3d234cd.pth