mmselfsup/configs/selfsup/mae/metafile.yml

251 lines
9.7 KiB
YAML

Collections:
- Name: MAE
Metadata:
Training Data: ImageNet-1k
Training Techniques:
- AdamW
Training Resources: 8x A100-80G GPUs
Architecture:
- ViT
Paper:
URL: https://arxiv.org/abs/2111.06377
Title: "Masked Autoencoders Are Scalable Vision Learners"
README: configs/selfsup/mae/README.md
Models:
- Name: mae_vit-base-p16_8xb512-amp-coslr-300e_in1k
In Collection: MAE
Metadata:
Epochs: 300
Batch Size: 4096
Results: null
Config: configs/selfsup/mae/mae_vit-base-p16_8xb512-amp-coslr-300e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-300e_in1k/mae_vit-base-p16_8xb512-coslr-300e-fp16_in1k_20220829-c2cf66ba.pth
Downstream:
- Type: Image Classification
Metadata:
Epochs: 90
Batch Size: 16384
Results:
- Task: Linear Evaluation
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 60.8
Config: configs/benchmarks/classification/imagenet/vit-base-p16_linear-8xb2048-coslr-90e_in1k.py
- Type: Image Classification
Metadata:
Epochs: 100
Batch Size: 1024
Results:
- Task: Fine-tuning
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.1
Config: configs/benchmarks/classification/imagenet/vit-base-p16_ft-8xb128-coslr-100e_in1k.py
- Name: mae_vit-base-p16_8xb512-amp-coslr-400e_in1k
In Collection: MAE
Metadata:
Epochs: 400
Batch Size: 4096
Results: null
Config: configs/selfsup/mae/mae_vit-base-p16_8xb512-amp-coslr-400e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-400e_in1k/mae_vit-base-p16_8xb512-coslr-400e-fp16_in1k_20220825-bc79e40b.pth
Downstream:
- Type: Image Classification
Metadata:
Epochs: 90
Batch Size: 16384
Results:
- Task: Linear Evaluation
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 62.5
Config: configs/benchmarks/classification/imagenet/vit-base-p16_linear-8xb2048-coslr-90e_in1k.py
- Type: Image Classification
Metadata:
Epochs: 100
Batch Size: 1024
Results:
- Task: Fine-tuning
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.3
Config: configs/benchmarks/classification/imagenet/vit-base-p16_ft-8xb128-coslr-100e_in1k.py
- Name: mae_vit-base-p16_8xb512-amp-coslr-800e_in1k
In Collection: MAE
Metadata:
Epochs: 800
Batch Size: 4096
Results: null
Config: configs/selfsup/mae/mae_vit-base-p16_8xb512-amp-coslr-800e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-800e_in1k/mae_vit-base-p16_8xb512-coslr-800e-fp16_in1k_20220825-5d81fbc4.pth
Downstream:
- Type: Image Classification
Metadata:
Epochs: 90
Batch Size: 16384
Results:
- Task: Linear Evaluation
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 65.1
Config: configs/benchmarks/classification/imagenet/vit-base-p16_linear-8xb2048-coslr-90e_in1k.py
- Type: Image Classification
Metadata:
Epochs: 100
Batch Size: 1024
Results:
- Task: Fine-tuning
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.3
Config: configs/benchmarks/classification/imagenet/vit-base-p16_ft-8xb128-coslr-100e_in1k.py
- Name: mae_vit-base-p16_8xb512-amp-coslr-1600e_in1k
In Collection: MAE
Metadata:
Epochs: 1600
Batch Size: 4096
Results: null
Config: configs/selfsup/mae/mae_vit-base-p16_8xb512-amp-coslr-1600e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k_20220825-f7569ca2.pth
Downstream:
- Type: Image Classification
Metadata:
Epochs: 90
Batch Size: 16384
Results:
- Task: Linear Evaluation
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 67.1
Config: configs/benchmarks/classification/imagenet/vit-base-p16_linear-8xb2048-coslr-90e_in1k.py
- Type: Image Classification
Metadata:
Epochs: 100
Batch Size: 1024
Results:
- Task: Fine-tuning
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.5
Config: configs/benchmarks/classification/imagenet/vit-base-p16_ft-8xb128-coslr-100e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20220825-cf70aa21.pth
- Name: mae_vit-large-p16_8xb512-amp-coslr-400e_in1k
In Collection: MAE
Metadata:
Epochs: 400
Batch Size: 4096
Results: null
Config: configs/selfsup/mae/mae_vit-large-p16_8xb512-amp-coslr-400e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-400e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-400e_in1k_20220825-b11d0425.pth
Downstream:
- Type: Image Classification
Metadata:
Epochs: 90
Batch Size: 16384
Results:
- Task: Linear Evaluation
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 70.7
Config: configs/benchmarks/classification/imagenet/vit-large-p16_linear-8xb2048-coslr-90e_in1k.py
- Type: Image Classification
Metadata:
Epochs: 50
Batch Size: 1024
Results:
- Task: Fine-tuning
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 85.2
Config: configs/benchmarks/classification/imagenet/vit-large-p16_ft-8xb128-coslr-50e_in1k.py
- Name: mae_vit-large-p16_8xb512-amp-coslr-800e_in1k
In Collection: MAE
Metadata:
Epochs: 800
Batch Size: 4096
Results: null
Config: configs/selfsup/mae/mae_vit-large-p16_8xb512-amp-coslr-800e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-800e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-800e_in1k_20220825-df72726a.pth
Downstream:
- Type: Image Classification
Metadata:
Epochs: 90
Batch Size: 16384
Results:
- Task: Linear Evaluation
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 73.7
Config: configs/benchmarks/classification/imagenet/vit-large-p16_linear-8xb2048-coslr-90e_in1k.py
- Type: Image Classification
Metadata:
Epochs: 50
Batch Size: 1024
Results:
- Task: Fine-tuning
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 85.4
Config: configs/benchmarks/classification/imagenet/vit-large-p16_ft-8xb128-coslr-50e_in1k.py
- Name: mae_vit-large-p16_8xb512-amp-coslr-1600e_in1k
In Collection: MAE
Metadata:
Epochs: 1600
Batch Size: 4096
Results: null
Config: configs/selfsup/mae/mae_vit-large-p16_8xb512-amp-coslr-1600e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-1600e_in1k_20220825-cc7e98c9.pth
Downstream:
- Type: Image Classification
Metadata:
Epochs: 90
Batch Size: 16384
Results:
- Task: Linear Evaluation
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 75.5
Config: configs/benchmarks/classification/imagenet/vit-large-p16_linear-8xb2048-coslr-90e_in1k.py
- Type: Image Classification
Metadata:
Epochs: 50
Batch Size: 1024
Results:
- Task: Fine-tuning
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 85.7
Config: configs/benchmarks/classification/imagenet/vit-large-p16_ft-8xb128-coslr-50e_in1k.py
- Name: mae_vit-huge-p16_8xb512-amp-coslr-1600e_in1k.py
In Collection: MAE
Metadata:
Epochs: 1600
Batch Size: 4096
Results: null
Config: configs/selfsup/mae/mae_vit-huge-p16_8xb512-amp-coslr-1600e_in1k.py.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k_20220916-ff848775.pth
Downstream:
- Type: Image Classification
Metadata:
Epochs: 50
Batch Size: 1024
Results:
- Task: Fine-tuning
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 86.9
Config: configs/benchmarks/classification/imagenet/vit-large-p16_ft-8xb128-coslr-50e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/vit-huge-p16_ft-8xb128-coslr-50e_in1k/vit-huge-p16_ft-8xb128-coslr-50e_in1k_20220916-0bfc9bfd.pth
- Type: Image Classification
Metadata:
Epochs: 50
Batch Size: 256
Results:
- Task: Fine-tuning
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 87.3
Config: configs/benchmarks/classification/imagenet/vit-huge-p16_ft-32xb8-coslr-50e_in1k-448.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/vit-huge-p16_ft-32xb8-coslr-50e_in1k-448/vit-huge-p16_ft-32xb8-coslr-50e_in1k-448_20220916-95b6a0ce.pth