mmselfsup/configs/tsne/vit-base-p16_imagenet.py

46 lines
1.2 KiB
Python

_base_ = 'mmcls::_base_/default_runtime.py'
model = dict(
_scope_='mmcls',
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
arch='base',
img_size=224,
patch_size=16,
out_indices=-1,
drop_path_rate=0.1,
avg_token=False,
output_cls_token=False,
final_norm=False),
neck=None,
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=768,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
init_cfg=[dict(type='TruncNormal', layer='Linear', std=2e-5)]),
)
dataset_type = 'mmcls.ImageNet'
data_root = 'data/imagenet/'
file_client_args = dict(backend='disk')
extract_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='mmcls.ResizeEdge', scale=256, edge='short'),
dict(type='CenterCrop', crop_size=224),
dict(type='mmcls.PackClsInputs'),
]
extract_dataloader = dict(
batch_size=8,
num_workers=4,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
ann_file='meta/val.txt',
data_prefix='val',
pipeline=extract_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
)