8.0 KiB
Visualization
Visualization can give an intuitive interpretation of the performance of the model.
How visualization is implemented
It is recommended to learn the basic concept of visualization in engine.md.
OpenMMLab 2.0 introduces the visualization object Visualizer
and several visualization backends VisBackend
. The diagram below shows the relationship between Visualizer
and VisBackend
,

What Visualization do in MMSelfsup
(1) Save training data using different storage backends
The backends in MMEngine includes LocalVisBackend
, TensorboardVisBackend
and WandbVisBackend
.
During training, after_train_iter() in the default hook LoggerHook
will be called, and use add_scalars
in different backends, as follows:
...
def after_train_iter(...):
...
runner.visualizer.add_scalars(
tag, step=runner.iter + 1, file_path=self.json_log_path)
...
(2) Browse dataset
The function add_datasample()
is impleted in SelfSupVisualizer
, and it is mainly used in browse_dataset.py for browsing dataset. More tutorial is in analysis_tools.md
Use Different Storage Backends
If you want to use a different backend (Wandb, Tensorboard, or a custom backend with a remote window), just change the vis_backends
in the config, as follows:
Local
vis_backends = [dict(type='LocalVisBackend')]
Tensorboard
vis_backends = [dict(type='TensorboardVisBackend')]
visualizer = dict(
type='SelfSupVisualizer', vis_backends=vis_backends, name='visualizer')
E.g.

Wandb
vis_backends = [dict(type='WandbVisBackend')]
visualizer = dict(
type='SelfSupVisualizer', vis_backends=vis_backends, name='visualizer')
Note that when multiple visualization backends exist for vis_backends
, only WandbVisBackend
is valid.
E.g.

Customize Visualization
The customization of the visualization is similar to other components. If you want to customize Visualizer
, VisBackend
or VisualizationHook
, you can refer to Visualization Doc in MMEngine.
Visualize Datasets
tools/misc/browse_dataset.py
helps the user to browse a mmselfsup dataset (transformed images) visually, or save the image to a designated directory.
python tools/misc/browse_dataset.py ${CONFIG} [-h] [--skip-type ${SKIP_TYPE[SKIP_TYPE...]}] [--output-dir ${OUTPUT_DIR}] [--not-show] [--show-interval ${SHOW_INTERVAL}]
An example:
python tools/misc/browse_dataset.py configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py
An example of visualization:

- The left two pictures are images from contrastive learning data pipeline.
- The right one is a masked image.
Visualize t-SNE
We provide an off-the-shelf tool to visualize the quality of image representations by t-SNE.
python tools/analysis_tools/visualize_tsne.py ${CONFIG_FILE} --checkpoint ${CKPT_PATH} --work-dir ${WORK_DIR} [optional arguments]
Arguments:
CONFIG_FILE
: config file for t-SNE, which listed in the directoryconfigs/tsne/
CKPT_PATH
: the path or link of the model's checkpoint.WORK_DIR
: the directory to save the results of visualization.[optional arguments]
: for optional arguments, you can refer to visualize_tsne.py
An example of command:
python ./tools/analysis_tools/visualize_tsne.py \
configs/tsne/resnet50_imagenet.py \
--checkpoint https://download.openmmlab.com/mmselfsup/1.x/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k/mocov2_resnet50_8xb32-coslr-200e_in1k_20220825-b6d23c86.pth \
--work-dir ./work_dirs/tsne/mocov2/ \
--max-num-class 100
An example of visualization, left is from MoCoV2_ResNet50
and right is from MAE_ViT-base
:


Visualize Low-level Feature Reconstruction
We provide several reconstruction visualization for listed algorithms:
- MAE
- SimMIM
- MaskFeat
Users can run command below to visualize the reconstruction.
python tools/analysis_tools/visualize_reconstruction.py ${CONFIG_FILE} \
--checkpoint ${CKPT_PATH} \
--img-path ${IMAGE_PATH} \
--out-file ${OUTPUT_PATH}
Arguments:
CONFIG_FILE
: config file for the pre-trained model.CKPT_PATH
: the path of model's checkpoint.IMAGE_PATH
: the input image path.OUTPUT_PATH
: the output image path, including 4 sub-images.[optional arguments]
: for optional arguments, you can refer to visualize_reconstruction.py
An example:
python tools/analysis_tools/visualize_reconstruction.py configs/selfsup/mae/mae_vit-huge-p16_8xb512-amp-coslr-1600e_in1k.py \
--checkpoint https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k_20220916-ff848775.pth \
--img-path data/imagenet/val/ILSVRC2012_val_00000003.JPEG \
--out-file test_mae.jpg \
--norm-pix
# As for SimMIM, it generates the mask in data pipeline, thus we use '--use-vis-pipeline' to apply 'vis_pipeline' defined in config instead of the pipeline defined in script.
python tools/analysis_tools/visualize_reconstruction.py configs/selfsup/simmim/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192.py \
--checkpoint https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192_20220916-4ad216d3.pth \
--img-path data/imagenet/val/ILSVRC2012_val_00000003.JPEG \
--out-file test_simmim.jpg \
--use-vis-pipeline
Results of MAE:

Results of SimMIM:

Results of MaskFeat:
