fangyixiao18 5ea54a48c8 fix ut
2022-07-18 11:06:44 +08:00

83 lines
2.4 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from mmselfsup.models.utils import Extractor
class DummyDataset(Dataset):
METAINFO = dict() # type: ignore
data = torch.randn(12, 2)
label = torch.ones(12)
def __len__(self):
return self.data.size(0)
def __getitem__(self, index):
return dict(inputs=self.data[index], data_sample=self.label[index])
class ToyModel(nn.Module):
def __init__(self):
super().__init__()
self.loss_lambda = 0.5
self.linear = nn.Linear(2, 1)
def forward(self, data_batch, return_loss=False):
inputs, labels = [], []
for x in data_batch:
inputs.append(x['inputs'])
labels.append(x['data_sample'])
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
inputs = torch.stack(inputs).to(device)
labels = torch.stack(labels).to(device)
outputs = self.linear(inputs)
if return_loss:
loss = (labels - outputs).sum()
outputs = dict(loss=loss, log_vars=dict(loss=loss.item()))
return outputs
else:
outputs = dict(log_vars=dict(a=1, b=0.5))
return outputs
def test_extractor():
dummy_dataset = DummyDataset()
extract_dataloader = dict(
batch_size=1,
num_workers=1,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dummy_dataset)
# test init
extractor = Extractor(
extract_dataloader=extract_dataloader, dist_mode=False, pool_cfg=None)
assert getattr(extractor, 'pool', None) is None
# test init
extractor = Extractor(
extract_dataloader=extract_dataloader,
dist_mode=False,
pool_cfg=dict(type='AvgPool2d', output_size=1))
# TODO: test runtime
# As the BaseModel is not defined finally, I will add it later.
# # test extractor
# with tempfile.TemporaryDirectory() as tmpdir:
# model = MMDataParallel(ExampleModel())
# optimizer = build_optimizer(model, optim_cfg)
# runner = build_runner(
# runner_cfg,
# default_args=dict(
# model=model,
# optimizer=optimizer,
# work_dir=tmpdir,
# logger=logging.getLogger()))
# features = extractor(runner)
# assert features.shape == (1, 1)