* [Fix]: Set qkv bias to False for cae and True for mae (#303) * [Fix]: Add mmcls transformer layer choice * [Fix]: Fix transformer encoder layer bug * [Fix]: Change UT of cae * [Feature]: Change the file name of cosine annealing hook (#304) * [Feature]: Change cosine annealing hook file name * [Feature]: Add UT for cosine annealing hook * [Fix]: Fix lint * read tutorials and fix typo (#308) * [Fix] fix config errors in MAE (#307) * update readthedocs algorithm readme (#310) * [Docs] Replace markdownlint with mdformat (#311) * Replace markdownlint with mdformat to avoid installing ruby * fix typo * add 'ba' to codespell ignore-words-list * Configure Myst-parser to parse anchor tag (#309) * [Docs] rewrite install.md (#317) * rewrite the install.md * add faq.md * fix lint * add FAQ to README * add Chinese version * fix typo * fix format * remove modification * fix format * [Docs] refine README.md file (#318) * refine README.md file * fix lint * format language button * rename getting_started.md * revise index.rst * add model_zoo.md to index.rst * fix lint * refine readme Co-authored-by: Jiahao Xie <52497952+Jiahao000@users.noreply.github.com> * [Enhance] update byol models and results (#319) * Update version information (#321) Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com> Co-authored-by: Yi Lu <21515006@zju.edu.cn> Co-authored-by: RenQin <45731309+soonera@users.noreply.github.com> Co-authored-by: Jiahao Xie <52497952+Jiahao000@users.noreply.github.com>
25 KiB
Model Zoo
All models and part of benchmark results are recorded below.
Pre-trained models
Remarks:
-
The training details are recorded in the config names.
-
You can click algorithm name to obtain more information.
Benchmarks
In the following tables, we only display ImageNet linear evaluation, ImageNet fine-tuning, COCO17 object detection and instance segmentation, and PASCAL VOC12 Aug semantic segmentation. You can click algorithm name above to check more comprehensive benchmark results.
ImageNet Linear Evaluation
If not specified, we use linear evaluation setting from MoCo as default. Other settings are mentioned in Remarks.
ImageNet Fine-tuning
Algorithm | Config | Remarks | Top-1 (%) |
---|---|---|---|
MAE | mae_vit-base-p16_8xb512-coslr-400e_in1k | 83.1 | |
SimMIM | simmim_swin-base_16xb128-coslr-100e_in1k-192 | 82.9 | |
CAE | cae_vit-base-p16_8xb256-fp16-coslr-300e_in1k | 83.2 |
COCO17 Object Detection and Instance Segmentation
In COCO17 object detection and instance segmentation task, we choose the evaluation protocol from MoCo, with Mask-RCNN FPN architecture. The results below are fine-tuned with the same config.
Algorithm | Config | mAP (Box) | mAP (Mask) |
---|---|---|---|
Relative Location | relative-loc_resnet50_8xb64-steplr-70e_in1k | 37.5 | 33.7 |
Rotation Prediction | rotation-pred_resnet50_8xb16-steplr-70e_in1k | 37.9 | 34.2 |
NPID | npid_resnet50_8xb32-steplr-200e_in1k | 38.5 | 34.6 |
SimCLR | simclr_resnet50_8xb32-coslr-200e_in1k | 38.7 | 34.9 |
MoCo v2 | mocov2_resnet50_8xb32-coslr-200e_in1k | 40.2 | 36.1 |
BYOL | byol_resnet50_8xb32-accum16-coslr-200e_in1k | 40.9 | 36.8 |
SwAV | swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96 | 40.2 | 36.3 |
SimSiam | simsiam_resnet50_8xb32-coslr-100e_in1k | 38.6 | 34.6 |
simsiam_resnet50_8xb32-coslr-200e_in1k | 38.8 | 34.9 |
Pascal VOC12 Aug Semantic Segmentation
In Pascal VOC12 Aug semantic segmentation task, we choose the evaluation protocol from MMSeg, with FCN architecture. The results below are fine-tuned with the same config.
Algorithm | Config | mIOU |
---|---|---|
Relative Location | relative-loc_resnet50_8xb64-steplr-70e_in1k | 63.49 |
Rotation Prediction | rotation-pred_resnet50_8xb16-steplr-70e_in1k | 64.31 |
NPID | npid_resnet50_8xb32-steplr-200e_in1k | 65.45 |
SimCLR | simclr_resnet50_8xb32-coslr-200e_in1k | 64.03 |
MoCo v2 | mocov2_resnet50_8xb32-coslr-200e_in1k | 67.55 |
BYOL | byol_resnet50_8xb32-accum16-coslr-200e_in1k | 67.16 |
SwAV | swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96 | 63.73 |
DenseCL | densecl_resnet50_8xb32-coslr-200e_in1k | 69.47 |
SimSiam | simsiam_resnet50_8xb32-coslr-100e_in1k | 48.35 |
simsiam_resnet50_8xb32-coslr-200e_in1k | 46.27 |