8.4 KiB
SimCLR
A Simple Framework for Contrastive Learning of Visual Representations
This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50.
Citation
@inproceedings{chen2020simple,
title={A simple framework for contrastive learning of visual representations},
author={Chen, Ting and Kornblith, Simon and Norouzi, Mohammad and Hinton, Geoffrey},
booktitle={ICML},
year={2020},
}
Models and Benchmarks
In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all models were trained on ImageNet1k dataset.
VOC SVM / Low-shot SVM
The Best Layer indicates that the best results are obtained from which layers feature map. For example, if the Best Layer is feature3, its best result is obtained from the second stage of ResNet (1 for stem layer, 2-5 for 4 stage layers).
Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.
Model | Config | Best Layer | SVM | k=1 | k=2 | k=4 | k=8 | k=16 | k=32 | k=64 | k=96 |
---|---|---|---|---|---|---|---|---|---|---|---|
model | resnet50_8xb32-coslr-200e |
ImageNet Linear Evaluation
The Feature1 - Feature5 don't have the GlobalAveragePooling, the feature map is pooled to the specific dimensions and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_8xb32-steplr-90e.py for details of config.
The AvgPool result is obtained from Linear Evaluation with GlobalAveragePooling. Please refer to file name for details of config.
Model | Config | Feature1 | Feature2 | Feature3 | Feature4 | Feature5 | AvgPool |
---|---|---|---|---|---|---|---|
model | resnet50_8xb32-coslr-200e |
iNaturalist2018 Linear Evaluation
Please refer to resnet50_mhead_8xb32-steplr-84e_inat18.py and file name for details of config.
Model | Config | Feature1 | Feature2 | Feature3 | Feature4 | Feature5 | AvgPool |
---|---|---|---|---|---|---|---|
model | resnet50_8xb32-coslr-200e |
Places205 Linear Evaluation
Please refer to resnet50_mhead_8xb32-steplr-28e_places205.py and file name for details of config.
Model | Config | Feature1 | Feature2 | Feature3 | Feature4 | Feature5 | AvgPool |
---|---|---|---|---|---|---|---|
model | resnet50_8xb32-coslr-200e |
Semi-Supervised Classification
- In this benchmark, the necks or heads are removed and only the backbone CNN is evaluated by appending a linear classification head. All parameters are fine-tuned.
- When training with 1% ImageNet, we find hyper-parameters especially the learning rate greatly influence the performance. Hence, we prepare a list of settings with the base learning rate from
{0.001, 0.01, 0.1}
and the learning rate multiplier for the head from{1, 10, 100}
. We choose the best performing setting for each method. The setting of parameters are indicated in the file name. The learning rate is indicated like1e-1
,1e-2
,1e-3
and the learning rate multiplier is indicated likehead1
,head10
,head100
. - Please use --deterministic in this benchmark.
Please refer to the directories configs/benchmarks/classification/imagenet/imagenet_1percent/
of 1% data and configs/benchmarks/classification/imagenet/imagenet_10percent/
10% data for details.
Model | Pretrain Config | Fine-tuned Config | Top-1 (%) | Top-5 (%) |
---|---|---|---|---|
model | resnet50_8xb32-coslr-200e |
Detection
The detection benchmarks includes 2 downstream task datasets, Pascal VOC 2007 + 2012 and COCO2017. This benchmark follows the evluation protocols set up by MoCo.
Pascal VOC 2007 + 2012
Please refer to faster_rcnn_r50_c4_mstrain_24k.py for details of config.
Model | Config | mAP | AP50 |
---|---|---|---|
model | resnet50_8xb32-coslr-200e |
COCO2017
Please refer to mask_rcnn_r50_fpn_mstrain_1x.py for details of config.
Model | Config | mAP(Box) | AP50(Box) | AP75(Box) | mAP(Mask) | AP50(Mask) | AP75(Mask) |
---|---|---|---|---|---|---|---|
model | resnet50_8xb32-coslr-200e |
Segmentation
The segmentation benchmarks includes 2 downstream task datasets, Cityscapes and Pascal VOC 2012 + Aug. It follows the evluation protocols set up by MMSegmentation.
Pascal VOC 2012 + Aug
Please refer to file for details of config.
Model | Config | mIOU |
---|---|---|
model | resnet50_8xb32-coslr-200e |
Cityscapes
Please refer to file for details of config.
Model | Config | mIOU |
---|---|---|
model | resnet50_8xb32-coslr-200e |