mirror of
https://github.com/open-mmlab/mmselfsup.git
synced 2025-06-03 14:59:38 +08:00
32 lines
1.1 KiB
Python
32 lines
1.1 KiB
Python
from mmcv.runner import OptimizerHook
|
|
try:
|
|
import apex
|
|
except:
|
|
print('apex is not installed')
|
|
|
|
class DistOptimizerHook(OptimizerHook):
|
|
"""Optimizer hook for distributed training."""
|
|
|
|
def __init__(self, update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=False):
|
|
self.grad_clip = grad_clip
|
|
self.coalesce = coalesce
|
|
self.bucket_size_mb = bucket_size_mb
|
|
self.update_interval = update_interval
|
|
self.use_fp16 = use_fp16
|
|
|
|
def before_run(self, runner):
|
|
runner.optimizer.zero_grad()
|
|
|
|
def after_train_iter(self, runner):
|
|
runner.outputs['loss'] /= self.update_interval
|
|
if self.use_fp16:
|
|
with apex.amp.scale_loss(runner.outputs['loss'], runner.optimizer) as scaled_loss:
|
|
scaled_loss.backward()
|
|
else:
|
|
runner.outputs['loss'].backward()
|
|
if self.every_n_iters(runner, self.update_interval):
|
|
if self.grad_clip is not None:
|
|
self.clip_grads(runner.model.parameters())
|
|
runner.optimizer.step()
|
|
runner.optimizer.zero_grad()
|