mmselfsup/tests/test_models/test_necks/test_densecl_neck.py

33 lines
1.1 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmselfsup.models.necks import DenseCLNeck
def test_densecl_neck():
neck = DenseCLNeck(16, 32, 16)
assert isinstance(neck.mlp, nn.Sequential)
assert isinstance(neck.mlp2, nn.Sequential)
assert neck.mlp[0].in_features == 16
assert neck.mlp[2].in_features == 32
assert neck.mlp[2].out_features == 16
assert neck.mlp2[0].in_channels == 16
assert neck.mlp2[2].in_channels == 32
assert neck.mlp2[2].out_channels == 16
# test neck when num_grid is None
fake_in = torch.rand((32, 16, 5, 5))
fake_out = neck.forward([fake_in])
assert fake_out[0].shape == torch.Size([32, 16])
assert fake_out[1].shape == torch.Size([32, 16, 25])
assert fake_out[2].shape == torch.Size([32, 16])
# test neck when num_grid is not None
neck = DenseCLNeck(16, 32, 16, num_grid=3)
fake_in = torch.rand((32, 16, 5, 5))
fake_out = neck.forward([fake_in])
assert fake_out[0].shape == torch.Size([32, 16])
assert fake_out[1].shape == torch.Size([32, 16, 9])
assert fake_out[2].shape == torch.Size([32, 16])