mirror of
https://github.com/open-mmlab/mmselfsup.git
synced 2025-06-03 14:59:38 +08:00
246 lines
8.2 KiB
Python
246 lines
8.2 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import torch
|
|
import torch.nn as nn
|
|
from mmcv.utils.parrots_wrapper import _BatchNorm
|
|
|
|
from mmselfsup.models.backbones import ResNet
|
|
from mmselfsup.models.backbones.resnet import BasicBlock, Bottleneck
|
|
|
|
|
|
def is_block(modules):
|
|
"""Check if is ResNet building block."""
|
|
if isinstance(modules, (BasicBlock, Bottleneck)):
|
|
return True
|
|
return False
|
|
|
|
|
|
def all_zeros(modules):
|
|
"""Check if the weight(and bias) is all zero."""
|
|
weight_zero = torch.equal(modules.weight.data,
|
|
torch.zeros_like(modules.weight.data))
|
|
if hasattr(modules, 'bias'):
|
|
bias_zero = torch.equal(modules.bias.data,
|
|
torch.zeros_like(modules.bias.data))
|
|
else:
|
|
bias_zero = True
|
|
|
|
return weight_zero and bias_zero
|
|
|
|
|
|
def check_norm_state(modules, train_state):
|
|
"""Check if norm layer is in correct train state."""
|
|
for mod in modules:
|
|
if isinstance(mod, _BatchNorm):
|
|
if mod.training != train_state:
|
|
return False
|
|
return True
|
|
|
|
|
|
def test_basic_block():
|
|
# BasicBlock with stride 1, out_channels == in_channels
|
|
block = BasicBlock(64, 64)
|
|
assert block.conv1.in_channels == 64
|
|
assert block.conv1.out_channels == 64
|
|
assert block.conv1.kernel_size == (3, 3)
|
|
assert block.conv1.stride == (1, 1)
|
|
assert block.conv2.in_channels == 64
|
|
assert block.conv2.out_channels == 64
|
|
assert block.conv2.kernel_size == (3, 3)
|
|
x = torch.randn(1, 64, 56, 56)
|
|
x_out = block(x)
|
|
assert x_out.shape == torch.Size([1, 64, 56, 56])
|
|
|
|
# BasicBlock with stride 1 and downsample
|
|
downsample = nn.Sequential(
|
|
nn.Conv2d(64, 128, kernel_size=1, bias=False), nn.BatchNorm2d(128))
|
|
block = BasicBlock(64, 128, downsample=downsample)
|
|
assert block.conv1.in_channels == 64
|
|
assert block.conv1.out_channels == 128
|
|
assert block.conv1.kernel_size == (3, 3)
|
|
assert block.conv1.stride == (1, 1)
|
|
assert block.conv2.in_channels == 128
|
|
assert block.conv2.out_channels == 128
|
|
assert block.conv2.kernel_size == (3, 3)
|
|
x = torch.randn(1, 64, 56, 56)
|
|
x_out = block(x)
|
|
assert x_out.shape == torch.Size([1, 128, 56, 56])
|
|
|
|
# BasicBlock with stride 2 and downsample
|
|
downsample = nn.Sequential(
|
|
nn.Conv2d(64, 128, kernel_size=1, stride=2, bias=False),
|
|
nn.BatchNorm2d(128))
|
|
block = BasicBlock(64, 128, stride=2, downsample=downsample)
|
|
assert block.conv1.in_channels == 64
|
|
assert block.conv1.out_channels == 128
|
|
assert block.conv1.kernel_size == (3, 3)
|
|
assert block.conv1.stride == (2, 2)
|
|
assert block.conv2.in_channels == 128
|
|
assert block.conv2.out_channels == 128
|
|
assert block.conv2.kernel_size == (3, 3)
|
|
x = torch.randn(1, 64, 56, 56)
|
|
x_out = block(x)
|
|
assert x_out.shape == torch.Size([1, 128, 28, 28])
|
|
|
|
|
|
def test_bottleneck():
|
|
# Test Bottleneck style
|
|
block = Bottleneck(64, 64, stride=2, style='pytorch')
|
|
assert block.conv1.stride == (1, 1)
|
|
assert block.conv2.stride == (2, 2)
|
|
block = Bottleneck(64, 64, stride=2, style='caffe')
|
|
assert block.conv1.stride == (2, 2)
|
|
assert block.conv2.stride == (1, 1)
|
|
|
|
# Bottleneck with stride 1
|
|
block = Bottleneck(64, 16, style='pytorch')
|
|
assert block.conv1.in_channels == 64
|
|
assert block.conv1.out_channels == 16
|
|
assert block.conv1.kernel_size == (1, 1)
|
|
assert block.conv2.in_channels == 16
|
|
assert block.conv2.out_channels == 16
|
|
assert block.conv2.kernel_size == (3, 3)
|
|
assert block.conv3.in_channels == 16
|
|
assert block.conv3.out_channels == 64
|
|
assert block.conv3.kernel_size == (1, 1)
|
|
x = torch.randn(1, 64, 56, 56)
|
|
x_out = block(x)
|
|
assert x_out.shape == (1, 64, 56, 56)
|
|
|
|
# Bottleneck with stride 1 and downsample
|
|
downsample = nn.Sequential(
|
|
nn.Conv2d(64, 256, kernel_size=1), nn.BatchNorm2d(256))
|
|
block = Bottleneck(64, 64, style='pytorch', downsample=downsample)
|
|
assert block.conv1.in_channels == 64
|
|
assert block.conv1.out_channels == 64
|
|
assert block.conv1.kernel_size == (1, 1)
|
|
assert block.conv2.in_channels == 64
|
|
assert block.conv2.out_channels == 64
|
|
assert block.conv2.kernel_size == (3, 3)
|
|
assert block.conv3.in_channels == 64
|
|
assert block.conv3.out_channels == 256
|
|
assert block.conv3.kernel_size == (1, 1)
|
|
x = torch.randn(1, 64, 56, 56)
|
|
x_out = block(x)
|
|
assert x_out.shape == (1, 256, 56, 56)
|
|
|
|
# Bottleneck with stride 2 and downsample
|
|
downsample = nn.Sequential(
|
|
nn.Conv2d(64, 256, kernel_size=1, stride=2), nn.BatchNorm2d(256))
|
|
block = Bottleneck(
|
|
64, 64, stride=2, style='pytorch', downsample=downsample)
|
|
x = torch.randn(1, 64, 56, 56)
|
|
x_out = block(x)
|
|
assert x_out.shape == (1, 256, 28, 28)
|
|
|
|
# Test Bottleneck with checkpointing
|
|
block = Bottleneck(64, 16, with_cp=True)
|
|
block.train()
|
|
assert block.with_cp
|
|
x = torch.randn(1, 64, 56, 56, requires_grad=True)
|
|
x_out = block(x)
|
|
assert x_out.shape == torch.Size([1, 64, 56, 56])
|
|
|
|
|
|
def test_resnet():
|
|
"""Test resnet backbone."""
|
|
# Test ResNet50 norm_eval=True
|
|
model = ResNet(50, norm_eval=True)
|
|
model.init_weights()
|
|
model.train()
|
|
assert check_norm_state(model.modules(), False)
|
|
|
|
# Test ResNet50 with torchvision pretrained weight
|
|
model = ResNet(depth=50, norm_eval=True)
|
|
model.init_weights()
|
|
model.train()
|
|
assert check_norm_state(model.modules(), False)
|
|
|
|
# Test ResNet50 with first stage frozen
|
|
frozen_stages = 1
|
|
model = ResNet(50, frozen_stages=frozen_stages)
|
|
model.init_weights()
|
|
model.train()
|
|
assert model.norm1.training is False
|
|
for layer in [model.conv1, model.norm1]:
|
|
for param in layer.parameters():
|
|
assert param.requires_grad is False
|
|
for i in range(1, frozen_stages + 1):
|
|
layer = getattr(model, f'layer{i}')
|
|
for mod in layer.modules():
|
|
if isinstance(mod, _BatchNorm):
|
|
assert mod.training is False
|
|
for param in layer.parameters():
|
|
assert param.requires_grad is False
|
|
|
|
# Test ResNet18 forward
|
|
model = ResNet(18, out_indices=(0, 1, 2, 3, 4))
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
feat = model(imgs)
|
|
assert len(feat) == 5
|
|
assert feat[0].shape == (1, 64, 112, 112)
|
|
assert feat[1].shape == (1, 64, 56, 56)
|
|
assert feat[2].shape == (1, 128, 28, 28)
|
|
assert feat[3].shape == (1, 256, 14, 14)
|
|
assert feat[4].shape == (1, 512, 7, 7)
|
|
|
|
# Test ResNet50 with BatchNorm forward
|
|
model = ResNet(50, out_indices=(0, 1, 2, 3, 4))
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
feat = model(imgs)
|
|
assert len(feat) == 5
|
|
assert feat[0].shape == (1, 64, 112, 112)
|
|
assert feat[1].shape == (1, 256, 56, 56)
|
|
assert feat[2].shape == (1, 512, 28, 28)
|
|
assert feat[3].shape == (1, 1024, 14, 14)
|
|
assert feat[4].shape == (1, 2048, 7, 7)
|
|
|
|
# Test ResNet50 with layers 3 (top feature maps) out forward
|
|
model = ResNet(50, out_indices=(4, ))
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
feat = model(imgs)
|
|
assert feat[0].shape == (1, 2048, 7, 7)
|
|
|
|
# Test ResNet50 with checkpoint forward
|
|
model = ResNet(50, out_indices=(0, 1, 2, 3, 4), with_cp=True)
|
|
for m in model.modules():
|
|
if is_block(m):
|
|
assert m.with_cp
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
feat = model(imgs)
|
|
assert len(feat) == 5
|
|
assert feat[0].shape == (1, 64, 112, 112)
|
|
assert feat[1].shape == (1, 256, 56, 56)
|
|
assert feat[2].shape == (1, 512, 28, 28)
|
|
assert feat[3].shape == (1, 1024, 14, 14)
|
|
assert feat[4].shape == (1, 2048, 7, 7)
|
|
|
|
# zero initialization of residual blocks
|
|
model = ResNet(50, zero_init_residual=True)
|
|
model.init_weights()
|
|
for m in model.modules():
|
|
if isinstance(m, Bottleneck):
|
|
assert all_zeros(m.norm3)
|
|
elif isinstance(m, BasicBlock):
|
|
assert all_zeros(m.norm2)
|
|
|
|
# non-zero initialization of residual blocks
|
|
model = ResNet(50, zero_init_residual=False)
|
|
model.init_weights()
|
|
for m in model.modules():
|
|
if isinstance(m, Bottleneck):
|
|
assert not all_zeros(m.norm3)
|
|
elif isinstance(m, BasicBlock):
|
|
assert not all_zeros(m.norm2)
|