mmselfsup/tests/test_datasets/test_transforms/test_processing.py

588 lines
20 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import random
import numpy as np
import pytest
import torch
import torchvision
from mmcv import imread
from mmcv.transforms import Compose
from mmengine.utils import digit_version
from PIL import Image
import mmselfsup.datasets.transforms.processing as mmselfsup_transforms
from mmselfsup.datasets.transforms import (
BEiTMaskGenerator, ColorJitter, RandomGaussianBlur, RandomPatchWithLabels,
RandomResizedCropAndInterpolationWithTwoPic, RandomSolarize,
RotationWithLabels, SimMIMMaskGenerator)
def test_simmim_mask_gen():
transform = dict(
input_size=192, mask_patch_size=32, model_patch_size=4, mask_ratio=0.6)
img = torch.rand((3, 192, 192))
results = {'img': img}
module = SimMIMMaskGenerator(**transform)
results = module(results)
# test transform
assert list(results['img'].shape) == [3, 192, 192]
assert list(results['mask'].shape) == [48, 48]
# test repr
assert isinstance(str(module), str)
def test_beit_mask_gen():
transform = dict(
input_size=(14, 14),
num_masking_patches=75,
max_num_patches=None,
min_num_patches=16)
module = BEiTMaskGenerator(**transform)
results = {}
results = module(results)
# test transform
assert list(results['mask'].shape) == [14, 14]
# test repr
assert isinstance(str(module), str)
def test_random_resize_crop_with_two_pic():
transform = dict(
size=224,
second_size=112,
interpolation='bicubic',
second_interpolation='lanczos',
scale=(0.08, 1.0))
module = RandomResizedCropAndInterpolationWithTwoPic(**transform)
fake_input = torch.rand((224, 224, 3)).numpy().astype(np.uint8)
results = {'img': fake_input}
results = module(results)
# test transform
assert list(results['img'][0].shape) == [224, 224, 3]
assert list(results['img'][1].shape) == [112, 112, 3]
# test repr
assert isinstance(str(module), str)
def test_random_gaussiablur():
with pytest.raises(AssertionError):
transform = RandomGaussianBlur(sigma_min=0.1, sigma_max=1.0, prob=-1)
original_img = np.ones((8, 8, 3), dtype=np.uint8)
results = dict(img=original_img)
transform = RandomGaussianBlur(sigma_min=0.1, sigma_max=1.0)
assert isinstance(str(transform), str)
results = transform(results)
assert results['img'].shape == original_img.shape
def test_random_solarize():
with pytest.raises(AssertionError):
transform = RandomSolarize(prob=-1)
original_img = np.ones((8, 8, 3), dtype=np.uint8)
results = dict(img=original_img)
transform = RandomSolarize()
assert isinstance(str(transform), str)
results = transform(results)
assert results['img'].shape == original_img.shape
def test_random_rotation():
transform = dict()
module = RotationWithLabels(**transform)
image = torch.rand((224, 224, 3)).numpy().astype(np.uint8)
results = {'img': image}
results = module(results)
# test transform
assert len(results['img']) == 4
assert list(results['img'][0].shape) == [224, 224, 3]
assert list(results['rot_label'].shape) == [4]
assert isinstance(str(module), str)
def test_random_patch():
transform = dict()
module = RandomPatchWithLabels(**transform)
image = torch.rand((224, 224, 3)).numpy().astype(np.uint8)
results = {'img': image}
results = module(results)
# test transform
assert len(results['img']) == 9
assert list(results['img'][0].shape) == [53, 53, 3]
assert list(results['patch_label'].shape) == [1, 8]
assert list(results['patch_box'].shape) == [1, 9, 4]
assert list(results['unpatched_img'].shape) == [1, 224, 224, 3]
assert isinstance(str(module), str)
def test_color_jitter():
with pytest.raises(ValueError):
transform = ColorJitter(-1, 0, 0, 0)
with pytest.raises(ValueError):
transform = ColorJitter(0, 0, 0, [0, 1])
with pytest.raises(TypeError):
transform = ColorJitter('test', 0, 0, 0)
original_img = torch.rand((224, 224, 3)).numpy().astype(np.uint8)
results = {'img': original_img}
transform = ColorJitter(0, 0, 0, 0)
results = transform(results)
assert np.equal(results['img'], original_img).all()
transform = ColorJitter(0.4, 0.4, 0.2, 0.1)
results = transform(results)
assert results['img'].shape == original_img.shape
assert isinstance(str(transform), str)
def test_randomresizedcrop():
ori_img = imread(
osp.join(osp.dirname(__file__), '../../data/color.jpg'), 'color')
ori_img_pil = Image.open(
osp.join(osp.dirname(__file__), '../../data/color.jpg'))
seed = random.randint(0, 100)
# test when scale is not of kind (min, max)
with pytest.raises(ValueError):
kwargs = dict(
size=(200, 300), scale=(1.0, 0.08), ratio=(3. / 4., 4. / 3.))
aug = []
aug.extend([mmselfsup_transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
composed_transform(results)['img']
# test when ratio is not of kind (min, max)
with pytest.raises(ValueError):
kwargs = dict(
size=(200, 300), scale=(0.08, 1.0), ratio=(4. / 3., 3. / 4.))
aug = []
aug.extend([mmselfsup_transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
composed_transform(results)['img']
# test crop size is int
kwargs = dict(size=200, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.))
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([torchvision.transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
baseline = composed_transform(ori_img_pil)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmselfsup_transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
# test __repr__()
print(composed_transform)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert np.array(img).shape == (200, 200, 3)
assert np.array(baseline).shape == (200, 200, 3)
nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero())
nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero())
assert nonzero == nonzero_transform
# test crop size < image size
kwargs = dict(size=(200, 300), scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.))
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([torchvision.transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
baseline = composed_transform(ori_img_pil)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmselfsup_transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert np.array(img).shape == (200, 300, 3)
assert np.array(baseline).shape == (200, 300, 3)
nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero())
nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero())
assert nonzero == nonzero_transform
# test crop size > image size
kwargs = dict(size=(600, 700), scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.))
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([torchvision.transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
baseline = composed_transform(ori_img_pil)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmselfsup_transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert np.array(img).shape == (600, 700, 3)
assert np.array(baseline).shape == (600, 700, 3)
nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero())
nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero())
assert nonzero == nonzero_transform
# test cropping the whole image
kwargs = dict(
size=(ori_img.shape[0], ori_img.shape[1]),
scale=(1.0, 2.0),
ratio=(1.0, 2.0))
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([torchvision.transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
baseline = composed_transform(ori_img_pil)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmselfsup_transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert np.array(img).shape == (ori_img.shape[0], ori_img.shape[1], 3)
assert np.array(baseline).shape == (ori_img.shape[0], ori_img.shape[1], 3)
nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero())
nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero())
assert nonzero == nonzero_transform
# test central crop when in_ratio < min(ratio)
kwargs = dict(
size=(ori_img.shape[0], ori_img.shape[1]),
scale=(1.0, 2.0),
ratio=(2., 3.))
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([torchvision.transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
baseline = composed_transform(ori_img_pil)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmselfsup_transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert np.array(img).shape == (ori_img.shape[0], ori_img.shape[1], 3)
assert np.array(baseline).shape == (ori_img.shape[0], ori_img.shape[1], 3)
nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero())
nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero())
assert nonzero == nonzero_transform
# test central crop when in_ratio > max(ratio)
kwargs = dict(
size=(ori_img.shape[0], ori_img.shape[1]),
scale=(1.0, 2.0),
ratio=(3. / 4., 1))
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([torchvision.transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
baseline = composed_transform(ori_img_pil)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmselfsup_transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert np.array(img).shape == (ori_img.shape[0], ori_img.shape[1], 3)
assert np.array(baseline).shape == (ori_img.shape[0], ori_img.shape[1], 3)
nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero())
nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero())
assert nonzero == nonzero_transform
# test different interpolation types
for mode in ['nearest', 'bilinear', 'bicubic', 'area', 'lanczos']:
kwargs = dict(
size=(600, 700),
scale=(0.08, 1.0),
ratio=(3. / 4., 4. / 3.),
interpolation=mode)
aug = []
aug.extend([mmselfsup_transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert img.shape == (600, 700, 3)
def test_randomcrop():
ori_img = imread(
osp.join(osp.dirname(__file__), '../../data/color.jpg'), 'color')
ori_img_pil = Image.open(
osp.join(osp.dirname(__file__), '../../data/color.jpg'))
seed = random.randint(0, 100)
# test crop size is int
kwargs = dict(size=200, padding=0, pad_if_needed=True, fill=0)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([torchvision.transforms.RandomCrop(**kwargs)])
composed_transform = Compose(aug)
baseline = composed_transform(ori_img_pil)
kwargs = dict(size=200, padding=0, pad_if_needed=True, pad_val=0)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmselfsup_transforms.RandomCrop(**kwargs)])
composed_transform = Compose(aug)
# test __repr__()
print(composed_transform)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert np.array(img).shape == (200, 200, 3)
assert np.array(baseline).shape == (200, 200, 3)
nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero())
nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero())
assert nonzero == nonzero_transform
# test crop size < image size
kwargs = dict(size=(200, 300), padding=0, pad_if_needed=True, fill=0)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([torchvision.transforms.RandomCrop(**kwargs)])
composed_transform = Compose(aug)
baseline = composed_transform(ori_img_pil)
kwargs = dict(size=(200, 300), padding=0, pad_if_needed=True, pad_val=0)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmselfsup_transforms.RandomCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert np.array(img).shape == (200, 300, 3)
assert np.array(baseline).shape == (200, 300, 3)
nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero())
nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero())
assert nonzero == nonzero_transform
# test crop size > image size
kwargs = dict(size=(600, 700), padding=0, pad_if_needed=True, fill=0)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([torchvision.transforms.RandomCrop(**kwargs)])
composed_transform = Compose(aug)
baseline = composed_transform(ori_img_pil)
kwargs = dict(size=(600, 700), padding=0, pad_if_needed=True, pad_val=0)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmselfsup_transforms.RandomCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert np.array(img).shape == (600, 700, 3)
assert np.array(baseline).shape == (600, 700, 3)
nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero())
nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero())
assert nonzero == nonzero_transform
# test crop size == image size
kwargs = dict(
size=(ori_img.shape[0], ori_img.shape[1]),
padding=0,
pad_if_needed=True,
fill=0)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([torchvision.transforms.RandomCrop(**kwargs)])
composed_transform = Compose(aug)
baseline = composed_transform(ori_img_pil)
kwargs = dict(
size=(ori_img.shape[0], ori_img.shape[1]),
padding=0,
pad_if_needed=True,
pad_val=0)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmselfsup_transforms.RandomCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert np.array(img).shape == (img.shape[0], img.shape[1], 3)
assert np.array(baseline).shape == (img.shape[0], img.shape[1], 3)
nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero())
nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero())
assert nonzero == nonzero_transform
# test different padding mode
for mode in ['constant', 'edge', 'reflect', 'symmetric']:
kwargs = dict(size=(500, 600), padding=0, pad_if_needed=True, fill=0)
kwargs['padding_mode'] = mode
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([torchvision.transforms.RandomCrop(**kwargs)])
composed_transform = Compose(aug)
baseline = composed_transform(ori_img_pil)
kwargs = dict(
size=(500, 600), padding=0, pad_if_needed=True, pad_val=0)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmselfsup_transforms.RandomCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert np.array(img).shape == (500, 600, 3)
assert np.array(baseline).shape == (500, 600, 3)
nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero())
nonzero_transform = len(
(img - np.array(baseline)[:, :, ::-1]).nonzero())
assert nonzero == nonzero_transform
def test_randomrotation():
ori_img = torch.rand((224, 224, 3)).numpy().astype(np.uint8)
ori_img_pil = Image.fromarray(ori_img, mode='RGB')
seed = random.randint(0, 100)
# test when degrees is negative
with pytest.raises(ValueError):
kwargs = dict(degrees=(-30))
aug = []
aug.extend([mmselfsup_transforms.RandomRotation(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
composed_transform(results)['img']
# test when center is not None and expand=True
with pytest.raises(ValueError):
kwargs = dict(degrees=(30, 60), expand=True, center=(5, 3))
aug = []
aug.extend([mmselfsup_transforms.RandomRotation(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
composed_transform(results)['img']
kwargs_list = [
# test degrees
dict(degrees=(30, 60)),
dict(degrees=(30, 30)),
dict(degrees=(60, 370)),
# test different interpolation types
dict(degrees=(30, 60), interpolation='nearest'),
dict(degrees=(30, 60), interpolation='bilinear'),
dict(degrees=(30, 60), interpolation='bicubic'),
# test center
dict(degrees=(30, 60), center=(5, 3)),
# test fill
dict(degrees=(30, 60), fill=5)
]
for kwargs in kwargs_list:
# RandomRotation in mmselfsup
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmselfsup_transforms.RandomRotation(**kwargs)])
composed_transform = Compose(aug)
# test __repr__()
print(composed_transform)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
# RandomRotation in torchvision
random.seed(seed)
np.random.seed(seed)
if 'interpolation' in kwargs:
if digit_version(
torchvision.__version__) >= digit_version('0.9.0'):
from torchvision.transforms.functional import InterpolationMode
inverse_modes_mapping = {
'nearest': InterpolationMode.NEAREST,
'bilinear': InterpolationMode.BILINEAR,
'bicubic': InterpolationMode.BICUBIC,
}
mode = kwargs['interpolation']
kwargs['interpolation'] = inverse_modes_mapping[mode]
else:
kwargs.pop('interpolation')
aug = []
aug.extend([torchvision.transforms.RandomRotation(**kwargs)])
composed_transform = Compose(aug)
baseline = composed_transform(ori_img_pil)
# compare the outputs of RandomRotation in mmselfsup and torchvision
assert np.array(img).shape == np.array(baseline).shape
nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero())
nonzero_transform = len(
(img - np.array(baseline)[:, :, ::-1]).nonzero())
assert nonzero == nonzero_transform