mmselfsup/tests/test_models/test_algorithms/test_byol.py

67 lines
1.8 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import platform
import pytest
import torch
from mmselfsup.models.algorithms.byol import BYOL
from mmselfsup.structures import SelfSupDataSample
backbone = dict(
type='ResNet',
depth=18,
in_channels=3,
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='BN'))
neck = dict(
type='NonLinearNeck',
in_channels=512,
hid_channels=2,
out_channels=2,
with_bias=True,
with_last_bn=False,
with_avg_pool=True,
norm_cfg=dict(type='BN1d'))
head = dict(
type='LatentPredictHead',
loss=dict(type='CosineSimilarityLoss'),
predictor=dict(
type='NonLinearNeck',
in_channels=2,
hid_channels=2,
out_channels=2,
with_bias=True,
with_last_bn=False,
with_avg_pool=False,
norm_cfg=dict(type='BN1d')))
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_byol():
data_preprocessor = dict(
mean=(123.675, 116.28, 103.53),
std=(58.395, 57.12, 57.375),
bgr_to_rgb=True)
alg = BYOL(
backbone=backbone,
neck=neck,
head=head,
data_preprocessor=copy.deepcopy(data_preprocessor))
fake_data = {
'inputs':
[torch.randn((2, 3, 224, 224)),
torch.randn((2, 3, 224, 224))],
'data_sample': [SelfSupDataSample() for _ in range(2)]
}
fake_inputs, fake_data_samples = alg.data_preprocessor(fake_data)
fake_loss = alg(fake_inputs, fake_data_samples, mode='loss')
assert isinstance(fake_loss['loss'].item(), float)
assert fake_loss['loss'].item() > -4
fake_feats = alg(fake_inputs, fake_data_samples, mode='tensor')
assert list(fake_feats[0].shape) == [2, 512, 7, 7]