98 lines
2.7 KiB
Python
98 lines
2.7 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import copy
|
|
import platform
|
|
from unittest.mock import MagicMock
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
import mmselfsup
|
|
from mmselfsup.models.algorithms.densecl import DenseCL
|
|
from mmselfsup.structures import SelfSupDataSample
|
|
|
|
queue_len = 32
|
|
feat_dim = 2
|
|
momentum = 0.999
|
|
loss_lambda = 0.5
|
|
backbone = dict(
|
|
type='ResNet',
|
|
depth=18,
|
|
in_channels=3,
|
|
out_indices=[4], # 0: conv-1, x: stage-x
|
|
norm_cfg=dict(type='BN'))
|
|
neck = dict(
|
|
type='DenseCLNeck',
|
|
in_channels=512,
|
|
hid_channels=2,
|
|
out_channels=2,
|
|
num_grid=None)
|
|
head = dict(
|
|
type='ContrastiveHead',
|
|
loss=dict(type='mmcls.CrossEntropyLoss'),
|
|
temperature=0.2)
|
|
|
|
|
|
def mock_batch_shuffle_ddp(img):
|
|
return img, 0
|
|
|
|
|
|
def mock_batch_unshuffle_ddp(img, mock_input):
|
|
return img
|
|
|
|
|
|
def mock_concat_all_gather(img):
|
|
return img
|
|
|
|
|
|
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
|
|
def test_densecl():
|
|
data_preprocessor = {
|
|
'mean': (123.675, 116.28, 103.53),
|
|
'std': (58.395, 57.12, 57.375),
|
|
'bgr_to_rgb': True
|
|
}
|
|
|
|
alg = DenseCL(
|
|
backbone=backbone,
|
|
neck=neck,
|
|
head=head,
|
|
queue_len=queue_len,
|
|
feat_dim=feat_dim,
|
|
momentum=momentum,
|
|
loss_lambda=loss_lambda,
|
|
data_preprocessor=copy.deepcopy(data_preprocessor))
|
|
|
|
assert alg.queue.size() == torch.Size([feat_dim, queue_len])
|
|
assert alg.queue2.size() == torch.Size([feat_dim, queue_len])
|
|
|
|
mmselfsup.models.algorithms.densecl.batch_shuffle_ddp = MagicMock(
|
|
side_effect=mock_batch_shuffle_ddp)
|
|
mmselfsup.models.algorithms.densecl.batch_unshuffle_ddp = MagicMock(
|
|
side_effect=mock_batch_unshuffle_ddp)
|
|
mmselfsup.models.algorithms.densecl.concat_all_gather = MagicMock(
|
|
side_effect=mock_concat_all_gather)
|
|
|
|
fake_data = {
|
|
'inputs':
|
|
[torch.randn((2, 3, 224, 224)),
|
|
torch.randn((2, 3, 224, 224))],
|
|
'data_sample': [SelfSupDataSample() for _ in range(2)]
|
|
}
|
|
|
|
fake_inputs, fake_data_samples = alg.data_preprocessor(fake_data)
|
|
fake_loss = alg(fake_inputs, fake_data_samples, mode='loss')
|
|
assert isinstance(fake_loss['loss_single'].item(), float)
|
|
assert isinstance(fake_loss['loss_dense'].item(), float)
|
|
assert fake_loss['loss_single'].item() > 0
|
|
assert fake_loss['loss_dense'].item() > 0
|
|
assert alg.queue_ptr.item() == 2
|
|
assert alg.queue2_ptr.item() == 2
|
|
|
|
fake_feat = alg(fake_inputs, fake_data_samples, mode='tensor')
|
|
assert list(fake_feat[0].shape) == [2, 512, 7, 7]
|
|
|
|
fake_outputs = alg(fake_inputs, fake_data_samples, mode='predict')
|
|
assert 'q_grid' in fake_outputs
|
|
assert 'value' in fake_outputs.q_grid
|
|
assert list(fake_outputs.q_grid.value.shape) == [2, 512, 49]
|