mmselfsup/tests/test_models/test_algorithms/test_densecl.py

98 lines
2.7 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import platform
from unittest.mock import MagicMock
import pytest
import torch
import mmselfsup
from mmselfsup.models.algorithms.densecl import DenseCL
from mmselfsup.structures import SelfSupDataSample
queue_len = 32
feat_dim = 2
momentum = 0.999
loss_lambda = 0.5
backbone = dict(
type='ResNet',
depth=18,
in_channels=3,
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='BN'))
neck = dict(
type='DenseCLNeck',
in_channels=512,
hid_channels=2,
out_channels=2,
num_grid=None)
head = dict(
type='ContrastiveHead',
loss=dict(type='mmcls.CrossEntropyLoss'),
temperature=0.2)
def mock_batch_shuffle_ddp(img):
return img, 0
def mock_batch_unshuffle_ddp(img, mock_input):
return img
def mock_concat_all_gather(img):
return img
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_densecl():
data_preprocessor = {
'mean': (123.675, 116.28, 103.53),
'std': (58.395, 57.12, 57.375),
'bgr_to_rgb': True
}
alg = DenseCL(
backbone=backbone,
neck=neck,
head=head,
queue_len=queue_len,
feat_dim=feat_dim,
momentum=momentum,
loss_lambda=loss_lambda,
data_preprocessor=copy.deepcopy(data_preprocessor))
assert alg.queue.size() == torch.Size([feat_dim, queue_len])
assert alg.queue2.size() == torch.Size([feat_dim, queue_len])
mmselfsup.models.algorithms.densecl.batch_shuffle_ddp = MagicMock(
side_effect=mock_batch_shuffle_ddp)
mmselfsup.models.algorithms.densecl.batch_unshuffle_ddp = MagicMock(
side_effect=mock_batch_unshuffle_ddp)
mmselfsup.models.algorithms.densecl.concat_all_gather = MagicMock(
side_effect=mock_concat_all_gather)
fake_data = {
'inputs':
[torch.randn((2, 3, 224, 224)),
torch.randn((2, 3, 224, 224))],
'data_sample': [SelfSupDataSample() for _ in range(2)]
}
fake_inputs, fake_data_samples = alg.data_preprocessor(fake_data)
fake_loss = alg(fake_inputs, fake_data_samples, mode='loss')
assert isinstance(fake_loss['loss_single'].item(), float)
assert isinstance(fake_loss['loss_dense'].item(), float)
assert fake_loss['loss_single'].item() > 0
assert fake_loss['loss_dense'].item() > 0
assert alg.queue_ptr.item() == 2
assert alg.queue2_ptr.item() == 2
fake_feat = alg(fake_inputs, fake_data_samples, mode='tensor')
assert list(fake_feat[0].shape) == [2, 512, 7, 7]
fake_outputs = alg(fake_inputs, fake_data_samples, mode='predict')
assert 'q_grid' in fake_outputs
assert 'value' in fake_outputs.q_grid
assert list(fake_outputs.q_grid.value.shape) == [2, 512, 49]