mmselfsup/tests/test_models/test_algorithms/test_mocov3.py

75 lines
2.0 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import platform
import pytest
import torch
from mmselfsup.models import MoCoV3
from mmselfsup.structures import SelfSupDataSample
backbone = dict(
type='MoCoV3ViT',
arch='mocov3-small', # embed_dim = 384
img_size=224,
patch_size=16,
stop_grad_conv1=True)
neck = dict(
type='NonLinearNeck',
in_channels=384,
hid_channels=2,
out_channels=2,
num_layers=2,
with_bias=False,
with_last_bn=True,
with_last_bn_affine=False,
with_last_bias=False,
with_avg_pool=False,
vit_backbone=True,
norm_cfg=dict(type='BN1d'))
head = dict(
type='MoCoV3Head',
predictor=dict(
type='NonLinearNeck',
in_channels=2,
hid_channels=2,
out_channels=2,
num_layers=2,
with_bias=False,
with_last_bn=True,
with_last_bn_affine=False,
with_last_bias=False,
with_avg_pool=False,
norm_cfg=dict(type='BN1d')),
loss=dict(type='mmcls.CrossEntropyLoss', loss_weight=2 * 0.2),
temperature=0.2)
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_mocov3():
data_preprocessor = dict(
mean=(123.675, 116.28, 103.53),
std=(58.395, 57.12, 57.375),
bgr_to_rgb=True)
alg = MoCoV3(
backbone=backbone,
neck=neck,
head=head,
data_preprocessor=copy.deepcopy(data_preprocessor))
fake_data = {
'inputs':
[torch.randn((2, 3, 224, 224)),
torch.randn((2, 3, 224, 224))],
'data_sample': [SelfSupDataSample() for _ in range(2)]
}
fake_inputs, fake_data_samples = alg.data_preprocessor(fake_data)
fake_loss = alg(fake_inputs, fake_data_samples, mode='loss')
assert fake_loss['loss'] > 0
# test extract
fake_feats = alg(fake_inputs, fake_data_samples, mode='tensor')
assert fake_feats[0][0].size() == torch.Size([2, 384, 14, 14])
assert fake_feats[0][1].size() == torch.Size([2, 384])