mmselfsup/configs/selfsup/_base_/datasets/imagenet_npid.py

41 lines
1.1 KiB
Python

# dataset settings
custom_imports = dict(imports='mmcls.datasets', allow_failed_imports=False)
dataset_type = 'mmcls.ImageNet'
data_root = 'data/imagenet/'
file_client_args = dict(backend='disk')
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(
type='RandomResizedCrop', size=224, scale=(0.2, 1.), backend='pillow'),
dict(
type='RandomGrayscale',
prob=0.2,
keep_channels=True,
channel_weights=(0.114, 0.587, 0.2989)),
dict(
type='ColorJitter',
brightness=0.4,
contrast=0.4,
saturation=0.4,
hue=0.4),
dict(type='RandomFlip', prob=0.5),
dict(
type='PackSelfSupInputs',
algorithm_keys=['sample_idx'],
meta_keys=['img_path'])
]
train_dataloader = dict(
batch_size=32,
num_workers=8,
drop_last=True,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='meta/train.txt',
data_prefix=dict(img_path='train/'),
pipeline=train_pipeline))