55 lines
1.6 KiB
Python
55 lines
1.6 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import copy
|
|
import platform
|
|
|
|
import pytest
|
|
import torch
|
|
from mmengine.data import InstanceData
|
|
|
|
from mmselfsup.core import SelfSupDataSample
|
|
from mmselfsup.models.algorithms import NPID
|
|
|
|
backbone = dict(
|
|
type='ResNet',
|
|
depth=18,
|
|
in_channels=3,
|
|
out_indices=[4], # 0: conv-1, x: stage-x
|
|
norm_cfg=dict(type='BN'))
|
|
neck = dict(
|
|
type='LinearNeck', in_channels=512, out_channels=2, with_avg_pool=True)
|
|
head = dict(
|
|
type='ContrastiveHead',
|
|
loss=dict(type='mmcls.CrossEntropyLoss'),
|
|
temperature=0.07)
|
|
memory_bank = dict(type='SimpleMemory', length=8, feat_dim=2, momentum=0.5)
|
|
|
|
|
|
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
|
|
def test_npid():
|
|
data_preprocessor = {
|
|
'mean': (123.675, 116.28, 103.53),
|
|
'std': (58.395, 57.12, 57.375),
|
|
'bgr_to_rgb': True
|
|
}
|
|
alg = NPID(
|
|
backbone=backbone,
|
|
neck=neck,
|
|
head=head,
|
|
memory_bank=memory_bank,
|
|
data_preprocessor=copy.deepcopy(data_preprocessor))
|
|
|
|
fake_data = [{
|
|
'inputs': [torch.randn((3, 224, 224))],
|
|
'data_sample':
|
|
SelfSupDataSample(
|
|
sample_idx=InstanceData(value=torch.randint(0, 7, (1, ))))
|
|
} for _ in range(2)]
|
|
|
|
fake_inputs, fake_data_samples = alg.data_preprocessor(fake_data)
|
|
fake_loss = alg(fake_inputs, fake_data_samples, mode='loss')
|
|
assert fake_loss['loss'] > -1
|
|
|
|
# test extract
|
|
fake_feats = alg(fake_inputs, fake_data_samples, mode='tensor')
|
|
assert fake_feats[0].size() == torch.Size([2, 512, 7, 7])
|