mmselfsup/tools/model_converters/mmcls2timm.py

87 lines
2.4 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
from collections import OrderedDict
from typing import Union
import mmengine
import torch
from mmengine.runner.checkpoint import _load_checkpoint
def convert_mmcls_to_timm(state_dict: Union[OrderedDict, dict]) -> OrderedDict:
"""Convert keys in MMClassification pretrained vit models to timm tyle.
Args:
state_dict (Union[OrderedDict, dict]): The state dict of
MMClassification pretrained vit models.
Returns:
OrderedDict: The converted state dict.
"""
# only keep the backbone weights and remove the backbone. prefix
state_dict = {
key.replace('backbone.', ''): value
for key, value in state_dict.items() if key.startswith('backbone.')
}
# replace projection with proj
state_dict = {
key.replace('projection', 'proj'): value
for key, value in state_dict.items()
}
# replace ffn.layers.0.0 with mlp.fc1
state_dict = {
key.replace('ffn.layers.0.0', 'mlp.fc1'): value
for key, value in state_dict.items()
}
# replace ffn.layers.1 with mlp.fc2
state_dict = {
key.replace('ffn.layers.1', 'mlp.fc2'): value
for key, value in state_dict.items()
}
# replace layers with blocks
state_dict = {
key.replace('layers', 'blocks'): value
for key, value in state_dict.items()
}
# replace ln with norm
state_dict = {
key.replace('ln', 'norm'): value
for key, value in state_dict.items()
}
# replace the last norm1 with norm
state_dict['norm.weight'] = state_dict.pop('norm1.weight')
state_dict['norm.bias'] = state_dict.pop('norm1.bias')
state_dict = OrderedDict({'model': state_dict})
return state_dict
def main():
parser = argparse.ArgumentParser(
description='Convert keys in MMClassification '
'pretrained vit models to timm tyle')
parser.add_argument('src', help='src model path or url')
parser.add_argument('dst', help='save path')
args = parser.parse_args()
checkpoint = _load_checkpoint(args.src)
if 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
else:
state_dict = checkpoint
state_dict = convert_mmcls_to_timm(state_dict)
mmengine.mkdir_or_exist(osp.dirname(args.dst))
torch.save(state_dict, args.dst)
if __name__ == '__main__':
main()