mmselfsup/tests/test_runtime/test_extractor.py

64 lines
1.8 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import logging
import tempfile
from unittest.mock import MagicMock
import torch
import torch.nn as nn
from mmcv.parallel import MMDataParallel
from mmcv.runner import build_runner
from torch.utils.data import Dataset
from mmselfsup.core.optimizer import build_optimizer
from mmselfsup.utils import Extractor
class ExampleDataset(Dataset):
def __getitem__(self, idx):
results = dict(img=torch.tensor([1]), img_metas=dict())
return results
def __len__(self):
return 1
class ExampleModel(nn.Module):
def __init__(self):
super(ExampleModel, self).__init__()
self.test_cfg = None
self.conv = nn.Conv2d(3, 3, 3)
self.neck = nn.Identity()
def forward(self, img, test_mode=False, **kwargs):
return img
def train_step(self, data_batch, optimizer):
loss = self.forward(**data_batch)
return dict(loss=loss)
def test_extractor():
test_dataset = ExampleDataset()
test_dataset.evaluate = MagicMock(return_value=dict(test='success'))
runner_cfg = dict(type='EpochBasedRunner', max_epochs=2)
optim_cfg = dict(type='SGD', lr=0.05, momentum=0.9, weight_decay=0.0005)
extractor = Extractor(
test_dataset, 1, 0, dist_mode=False, persistent_workers=False)
# test extractor
with tempfile.TemporaryDirectory() as tmpdir:
model = MMDataParallel(ExampleModel())
optimizer = build_optimizer(model, optim_cfg)
runner = build_runner(
runner_cfg,
default_args=dict(
model=model,
optimizer=optimizer,
work_dir=tmpdir,
logger=logging.getLogger()))
features = extractor(runner)
assert features.shape == (1, 1)