Lőrincz-Molnár Szabolcs-Botond 6732025f48 DenseCL init weights copy query encoder weights to key encoder. (#411)
* DenseCL init weights copy query encoder weights to key encoder.

* Logger prints that key encoder is initialized with query encoder.
2022-10-01 13:39:27 +08:00

91 lines
2.6 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import platform
from unittest.mock import MagicMock
import pytest
import torch
import mmselfsup
from mmselfsup.models.algorithms import DenseCL
queue_len = 32
feat_dim = 2
momentum = 0.999
loss_lambda = 0.5
backbone = dict(
type='ResNet',
depth=18,
in_channels=3,
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='BN'))
neck = dict(
type='DenseCLNeck',
in_channels=512,
hid_channels=2,
out_channels=2,
num_grid=None)
head = dict(type='ContrastiveHead', temperature=0.2)
def mock_batch_shuffle_ddp(img):
return img, 0
def mock_batch_unshuffle_ddp(img, mock_input):
return img
def mock_concat_all_gather(img):
return img
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_densecl():
with pytest.raises(AssertionError):
alg = DenseCL(backbone=backbone, neck=None, head=head)
with pytest.raises(AssertionError):
alg = DenseCL(backbone=backbone, neck=neck, head=None)
alg = DenseCL(
backbone=backbone,
neck=neck,
head=head,
queue_len=queue_len,
feat_dim=feat_dim,
momentum=momentum,
loss_lambda=loss_lambda)
assert alg.queue.size() == torch.Size([feat_dim, queue_len])
assert alg.queue2.size() == torch.Size([feat_dim, queue_len])
alg.init_weights()
for param_q, param_k in zip(alg.encoder_q.parameters(),
alg.encoder_k.parameters()):
assert torch.equal(param_q, param_k)
assert param_k.requires_grad is False
fake_input = torch.randn((2, 3, 224, 224))
with pytest.raises(AssertionError):
fake_out = alg.forward_train(fake_input)
fake_out = alg.forward_test(fake_input)
assert fake_out[0] is None
assert fake_out[2] is None
assert fake_out[1].size() == torch.Size([2, 512, 49])
mmselfsup.models.algorithms.densecl.batch_shuffle_ddp = MagicMock(
side_effect=mock_batch_shuffle_ddp)
mmselfsup.models.algorithms.densecl.batch_unshuffle_ddp = MagicMock(
side_effect=mock_batch_unshuffle_ddp)
mmselfsup.models.algorithms.densecl.concat_all_gather = MagicMock(
side_effect=mock_concat_all_gather)
fake_loss = alg.forward_train([fake_input, fake_input])
assert fake_loss['loss_single'] > 0
assert fake_loss['loss_dense'] > 0
assert alg.queue_ptr.item() == 2
assert alg.queue2_ptr.item() == 2
# test train step with 2 keys in loss
fake_outputs = alg.train_step(dict(img=[fake_input, fake_input]), None)
assert fake_outputs['loss'].item() > -1
assert fake_outputs['num_samples'] == 2