49 lines
1.3 KiB
Python
49 lines
1.3 KiB
Python
# dataset settings
|
|
data_source = 'ImageNet'
|
|
dataset_type = 'SingleViewDataset'
|
|
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
|
train_pipeline = [
|
|
dict(type='Resize', size=256),
|
|
dict(type='CenterCrop', size=256),
|
|
dict(type='RandomCrop', size=224),
|
|
dict(type='RandomHorizontalFlip'),
|
|
]
|
|
test_pipeline = [
|
|
dict(type='Resize', size=256),
|
|
dict(type='CenterCrop', size=224),
|
|
]
|
|
|
|
# prefetch
|
|
prefetch = False
|
|
if not prefetch:
|
|
train_pipeline.extend(
|
|
[dict(type='ToTensor'),
|
|
dict(type='Normalize', **img_norm_cfg)])
|
|
test_pipeline.extend(
|
|
[dict(type='ToTensor'),
|
|
dict(type='Normalize', **img_norm_cfg)])
|
|
|
|
# dataset summary
|
|
data = dict(
|
|
imgs_per_gpu=32, # total 32x8=256, 8GPU linear cls
|
|
workers_per_gpu=4,
|
|
train=dict(
|
|
type=dataset_type,
|
|
data_source=dict(
|
|
type=data_source,
|
|
data_prefix='data/Places205/train',
|
|
ann_file='data/Places205/meta/train.txt',
|
|
),
|
|
pipeline=train_pipeline,
|
|
prefetch=prefetch),
|
|
val=dict(
|
|
type=dataset_type,
|
|
data_source=dict(
|
|
type=data_source,
|
|
data_prefix='data/Places205/val',
|
|
ann_file='data/Places205/meta/val.txt',
|
|
),
|
|
pipeline=test_pipeline,
|
|
prefetch=prefetch))
|
|
evaluation = dict(interval=10, topk=(1, 5))
|