mmselfsup/configs/benchmarks/classification/_base_/datasets/places205.py

49 lines
1.3 KiB
Python

# dataset settings
data_source = 'ImageNet'
dataset_type = 'SingleViewDataset'
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_pipeline = [
dict(type='Resize', size=256),
dict(type='CenterCrop', size=256),
dict(type='RandomCrop', size=224),
dict(type='RandomHorizontalFlip'),
]
test_pipeline = [
dict(type='Resize', size=256),
dict(type='CenterCrop', size=224),
]
# prefetch
prefetch = False
if not prefetch:
train_pipeline.extend(
[dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg)])
test_pipeline.extend(
[dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg)])
# dataset summary
data = dict(
imgs_per_gpu=32, # total 32x8=256, 8GPU linear cls
workers_per_gpu=4,
train=dict(
type=dataset_type,
data_source=dict(
type=data_source,
data_prefix='data/Places205/train',
ann_file='data/Places205/meta/train.txt',
),
pipeline=train_pipeline,
prefetch=prefetch),
val=dict(
type=dataset_type,
data_source=dict(
type=data_source,
data_prefix='data/Places205/val',
ann_file='data/Places205/meta/val.txt',
),
pipeline=test_pipeline,
prefetch=prefetch))
evaluation = dict(interval=10, topk=(1, 5))